KD7064 - Optical Communications System

APPLY NOW BOOK AN OPEN DAY Add to My Courses Register your interest / Course PDF

What will I learn on this module?

The module will provide you with the knowledge and skills in system design around two key themes of optical fibre and optical wireless communications. These are essential topics for modern telecommunications and cover advanced optical system designs as well as including industrial standards in both fibre and wireless systems. Optical fibre communications provides the backbone long-haul and medium range telecommunications that offers ultrahigh data transmission capacity whereas optical wireless communications is an emerging technology. This technology enables data transmission, either in the infrared or visible light bands, employing lasers or light emitting diodes (LED) for indoor and short range communications system.

The module syllabus covers the technical analysis of optical fibre and wireless communications both at a system and sub-system level. Performance calculations and design considerations are covered, specifically in the areas of optical transmitters and receivers, Careful examination of performance limiters will be defined and methods to offset them will be explored and analysed for optimum design. These limiters include such effects as modulation, noise, dispersion, modal transmission, multipath effects, diffusion, fog, turbulence, smoke etc.

System performance is developed and explored to maximise the capability of a communication channel covering such aspects as link budgets, multiplexing techniques, BER analysis etc. allowing the performance criteria being characterised to meet a system specification

With these developed skills and knowledge you will be able to undertake the design and analysis of a complex optical communication system, making judicial choices and improvements.

How will I learn on this module?

The module will be delivered using a combination of lectures, tutorials, laboratory workshops, and directed and independent learning.

The learning and teaching approach will include introducing you to the theoretical aspects during the lectures. The application aspects will be further studied throughout the tutorial sessions, including problem solving and numerical simulation. In directed learning, you will be instructed to prepare for the lectures including reading the notes, finding and analysing relevant information in advance. Integrated quizzes and small tests will be frequently given during the class and tutorial sessions. Working groups will be formed to encourage you to engage critical discussion in class. Case studies will be used to demonstrate and reinforce the lectures and labs.

Small groups will be formed for laboratory workshops. Lab work will be a combination of the theory introduction, experiment procedure and set of questions that help you to analyse the results and refer them to existing research findings. Laboratory session will also provide the appropriate experiment methodology, optoelectronics hardware and simulator (LabVIEW and Matlab). You will be trained to utilise basic and advanced measurement instrument and associated application packages.

Throughout the module, you will gain extensive practical and numerical simulation skills essential for future employment in the optical communications industry

How will I be supported academically on this module?

Lectures, tutorials and laboratory workshops will be used to deliver the module. These provide you with the key academic support for the module. Lecture notes are the main element to provide the theoretical content and the research-rich based tutorials will help you to solve system design problems; however around these is build a number of support structures.

Workshops, supported by research tutors and technicians, provide verbal feedback and comments throughout the sessions. This feedback will cover technical, procedural and recording of results. A key aspect of this will be in stimulating the questioning the results and reference to the theoretical material in the module lectures. In addition, you will reflect upon the findings via research literature and industrial systems under the guidance of workshop tutors.

The eLearning-Portal (eLP), which has 24hr access, will contain all the module taught content and assessment guidance. In addition links to reading list support and relevant professional body related web sites. These will provide an industrial and research base to relate theory to the application of optical communications in an context.

Past-year examination papers and problem solutions will be available via eLP.

Feedback on student learning will take the form of verbal feedback during the tutorials and workshop sessions. However individual feedback may be obtained by arrange of appointments with the module tutor. Assessment feedback will be provided either in written or electronic form.

What will I be expected to read on this module?

All modules at Northumbria include a range of reading materials that students are expected to engage with. The reading list for this module can be found at: http://readinglists.northumbria.ac.uk
(Reading List service online guide for academic staff this containing contact details for the Reading List team – http://library.northumbria.ac.uk/readinglists)

What will I be expected to achieve?

Knowledge & Understanding:
1. Analyse and apply knowledge and understanding to systematically design, analyse and appraise optical communication systems in industrial scenarios. (UKspec SM1fl, EA1fl, EP2fl, ET3m)

2. Use appropriate tools, methods and appropriate research techniques to undertake design and analyse the problems in optical communication systems to obtain high quality innovative solutions (UKspec EA2fl, EA3fl, EA6m, SM3m, D3fl)

Intellectual / Professional skills & abilities:
3. Critically examine the problems in optical communications and develop a critical awareness of new research. (UKspec EA2fl, EA3fl, SM2fl)

Personal Values Attributes (Global / Cultural awareness, Ethics, Curiosity) (PVA):
4. Learn independently, enhancing existing skills and developing new ones whilst managing time and resources effectively(UKspec SM3m, SM4m, ET1m, D5m, EP11m)

5. Understand the use of technical literature and other information sources of optical communications in the development of innovative solutions(UKspec EP4m)

How will I be assessed?

Summative assessments in this module are:

1. Course work (2000 - 2500 words) assessment (30%) in the form of a case study. Module learning Outcomes - 1, 2, 3, 4, and 5 will be assessed.

2. Formal 3hr examination (70%) in which students will attempt 4 questions from 8.
Module Learning Outcomes - 1, 2, 3 and 4 will be assessed.





Module abstract

In this module you will acquire extensive knowledge and skills in optical communications system design covering both optical fibre and optical wireless areas. You will learn the fundamental concepts, theory and key system design for an optical communications system. Main system elements such as light propagation, light attenuation, transmitter design, light-emitting-diode (LED), photodetector, fibre nonlinearity, wireless channel, noises, losses, power distribution and link budget will be taught and analysed throughout the lectures and seminars. You will carry out some numerical evaluation of the LED performance using MATLAB and verify with practical data. There will be an opportunity for carrying out experiments and improve your practical skills through laboratory workshops. You will gain experience in the creation of a real design solution, from concept to realisation in the form of system design and evaluation.
Throughout the module you are able to enhance your research ability, your analysis and problem solving skills as well as understanding technologies applied in related industrial fields.

Course info

UCAS Code H602

Credits 20

Level of Study Undergraduate

Mode of Study 4 years full-time or 5 years with a placement (sandwich)/study abroad

Department Mathematics, Physics and Electrical Engineering

Location Ellison Building, Newcastle City Campus

City Newcastle

Start September 2019 or September 2020

Current, Relevant and Inspiring

We continuously review and improve course content in consultation with our students and employers. To make sure we can inform you of any changes to your course register for updates on the course page.

Your Learning Experience find out about our distinctive approach at 

Admissions Terms and Conditions - northumbria.ac.uk/terms
Fees and Funding - northumbria.ac.uk/fees
Admissions Policy - northumbria.ac.uk/adpolicy
Admissions Complaints Policy - northumbria.ac.uk/complaints