- Home
-
Study
Study
Interested in studying at Northumbria? With 31,500 students, Northumbria is one of the largest universities in the country, offering courses on either a full-time, part-time or distance learning basis.
Discover more-
Undergraduate
- Undergraduate Study
- Undergraduate Open Day
- Application Guides
- UCAS Exhibitions
- Foundation Years
- Undergraduate Fees & Funding
- School & College Outreach
-
Postgraduate
- Postgraduate Study
- Postgraduate Research Degrees
- Postgraduate Open Days and Events
- Postgraduate Fees & Funding
- Flexible Learning
- Thinking about a Masters?
- Continuing Professional Development
- Change Direction
-
Student Life
- The Hub - Student Blog
- Accommodation
- Life in Newcastle
- Support for Students
- Careers
- Information for Parents
- Students' Union
- Northumbria Sport
- New to Northumbria Guide
-
UK/EU Fees and Funding
- Undergraduate Tuition Fees
- Undergraduate Funding and Scholarships
- Masters Tuition Fees
- Masters Funding and Scholarships
- Postgraduate Research Fees
- Postgraduate Research Funding and Scholarships
- International Fees and Funding
- Degree Apprenticeships Information
- London Campus Fees and Funding
- Money Matters
-
-
International
International
Students from all over the world choose Northumbria University for many reasons; our academic excellence, and that they will benefit from a fantastic student experience.
Discover more-
Applying to Northumbria
- International Students
- European Union
- Our London Campus
- Northumbria in Amsterdam
- Northumbria Pathway
- Our Regional Offices
- Where are we visiting
- Northumbria and your country
-
Northumbria Language Centre
- Faculty Requirements
- Acceptable English Requirements
- Pre-Sessional English and Study Skills
- Academic Language Skills Programmes (ALS)
-
International Fees and Funding
- Undergraduate Tuition Fees
- Undergraduate Funding and Scholarships
- Masters Tuition Fees
- Masters Funding and Scholarships
- Postgraduate Research Fees
- Postgraduate Research Funding and Scholarships
- International Money Matters
-
Life at Northumbria
- Accommodation
- International student support
- The Hub - Student Blog
- Careers
- Our City
-
Study Abroad Erasmus and Exchange
- Study Abroad, Exchange and Erasmus
- Incoming Students
- Europe (Erasmus +) - including staff mobility
- Northumbria International Summer School 2019
-
-
Business
Business
The world is changing faster than ever before. The future is there to be won by organisations who find ways to turn todays possibilities into tomorrows competitive edge. In a connected world, collaboration can be the key to success.
Discover more -
Research
Research
Northumbria is a research-rich, business-focused, professional university with a global reputation for academic quality. We conduct ground-breaking research that is responsive to the science & technology, health & well being, economic and social and arts & cultural needs for the communities
Discover more -
About Us
About Us
Northumbria University is based in the heart of Newcastle upon Tyne, which is regularly voted the best place in the UK for students who are attracted by our excellent academic reputation, our top 10 graduate employment record and our outstanding campus and sports facilities.
Discover more-
About Northumbria
- Our Vision
- Our Staff
- Our Partners
- Student Profiles
- Alumni Profiles
- Leadership & Governance
- Academic Departments
- University Services
- History of Northumbria
- Contact us
- Online Shop
-
-
Alumni
Alumni
Northumbria University Alumni Association provides graduates with a lifelong link to the University, our global network has more than 215,000 members in 175 countries worldwide.
Discover more - Work For Us
What will I learn on this module?
This module is designed to introduce fundamental concepts in the mathematical area of Fluid Dynamics. You will analyse the equations of continuity and momentum, and will investigate key concepts in this area. We will introduce the Navier-Stokes equations, and case studies will be used to visualise and analyse real-world problems (using appropriate software) as appropriate to delivery of the module. Initially, we will use the inviscid approximation and then utilise analytical and computational techniques to investigate flows. The second half of the module is a specialist course in laminar incompressible viscous flows, encompassing background mathematical theory allied to a case study approach, with solution to problems by both analytical and computational means.
Assessment of the module is by one individual assignment (30%) and one formal examination (70%).
The module is designed to provide you with a useful preparation for employment in an applied mathematical environment or engineering environment.
Outline Syllabus
• Introduction of fluid dynamics, Navier-Stokes equations, equations of continuity and momentum for inviscid flow, unsteady one-dimensional flow along a pipe, irrotational flow, Bernouilli's equation, stream function formulation, flow past a cylinder, velocity potential.
• Low Reynolds Number Flow including: (i) lubrication theory, slider bearing, cylinder-plane, journal bearing, Reynolds equation, short bearing approximation; (ii) Flow in a corner, stream function formulation, solution of the biharmonic equation by separation of variables.
• High Reynolds Number Flow including boundary layer equations, skin friction, displacement and momentum thickness, similarity solutions, momentum integral equation, approximate solutions.
How will I learn on this module?
A wide range of learning and teaching approaches are used in this module. The module will be delivered using a combination of lectures and seminars in which students will be able to obtain help with problems associated with the module. Where deemed appropriate, computer laboratory sessions will be utilised to complement the taught material. Lectures allow students to experience and understand the formalism of the relevant mathematical techniques and include relevant examples. Seminars allow students to work through problems to develop their knowledge and skills, with the support of the tutor. Consequently, students have an opportunity to enhance their understanding of the subject through seminars which promote independent learning and tackle relevant problems. The mathematical rigour associated with this module naturally increases students’ employability and is a highly transferrable skill.
Students will be assessed by coursework (30%) and a formal examination (70%). The examination will cover all topics from the module. Written feedback will be provided on the coursework. Exam feedback will provided individually and also generically to indicate where the cohort has a strong or a weaker answer to examination questions.
How will I be supported academically on this module?
In addition to direct contact with the module team during lectures and seminars, students are encouraged to develop their curiosity by making direct contact with the module team either via email or the open door policy operated throughout the programme. Students will also be regularly referred to supporting resources including relevant texts and relevant multimedia materials.
References to these resources will be made available through the e-learning portal and in lectures and seminars.
What will I be expected to read on this module?
All modules at Northumbria include a range of reading materials that students are expected to engage with. The reading list for this module can be found at: http://readinglists.northumbria.ac.uk
(Reading List service online guide for academic staff this containing contact details for the Reading List team – http://library.northumbria.ac.uk/readinglists)
What will I be expected to achieve?
Knowledge & Understanding:
1. Demonstrate critical knowledge and understanding of analytical and / or computational techniques to investigate a variety of case studies based on unsteady one-dimensional flow and irrotational flow problems, using the inviscid approximation.
2. Demonstrate a systematic understanding of the stream function approach to analyse flow.
Intellectual / Professional skills & abilities:
3. Apply and justify lubrication theory to analyse various bearing geometries.
4. Develop the boundary layer equations, obtain similarity solutions and obtain approximate solutions via the momentum integral equation, recognising the limitations of analytical approaches.
Personal Values Attributes (Global / Cultural awareness, Ethics, Curiosity) (PVA):
How will I be assessed?
SUMMATIVE
• Assignment (30%) – 3, 4
• Examination (70%) – 1, 2, 3, 4
FORMATIVE
• Seminar problems – 1, 2, 3, 4
Feedback is provided to students individually and in a plenary format both written and verbally to help students improve and promote dialogue around the assessment.
Informal feedback on work in progress is given continuously during seminars.
Formal feedback will be given directly after the coursework and the exam.
Pre-requisite(s)
None
Co-requisite(s)
None
Module abstract
This module is designed to introduce fundamental concepts in Fluid Dynamics - an important topic in Applied Mathematics – using both analytical and computational techniques. We will introduce the Navier-Stokes equations and case studies will be used to visualise and analyse real-world problems (using appropriate software) as appropriate to delivery of the module. The second half of the module is a specialist course in laminar incompressible viscous flows, specifically considering high and low Reynolds number flows, and encompassing background mathematical theory allied to a case study approach, with solution to problems by both analytical and computational means. Assessment of the module is by one individual assignment (30%) and one formal examination (70%). The module is designed to provide students with a useful preparation for employment or postgraduate study in an applied mathematical or engineering environment.
What will I learn on this module?
This module is designed to introduce fundamental concepts in the mathematical area of Fluid Dynamics. You will analyse the equations of continuity and momentum, and will investigate key concepts in this area. We will introduce the Navier-Stokes equations, and case studies will be used to visualise and analyse real-world problems (using appropriate software) as appropriate to delivery of the module. Initially, we will use the inviscid approximation and then utilise analytical and computational techniques to investigate flows. The second half of the module is a specialist course in laminar incompressible viscous flows, encompassing background mathematical theory allied to a case study approach, with solution to problems by both analytical and computational means.
Assessment of the module is by one individual assignment (30%) and one formal examination (70%).
The module is designed to provide you with a useful preparation for employment in an applied mathematical environment or engineering environment.
Outline Syllabus
• Introduction of fluid dynamics, Navier-Stokes equations, equations of continuity and momentum for inviscid flow, unsteady one-dimensional flow along a pipe, irrotational flow, Bernouilli's equation, stream function formulation, flow past a cylinder, velocity potential.
• Low Reynolds Number Flow including: (i) lubrication theory, slider bearing, cylinder-plane, journal bearing, Reynolds equation, short bearing approximation; (ii) Flow in a corner, stream function formulation, solution of the biharmonic equation by separation of variables.
• High Reynolds Number Flow including boundary layer equations, skin friction, displacement and momentum thickness, similarity solutions, momentum integral equation, approximate solutions.
Course info
UCAS Code G100
Credits 20
Level of Study Undergraduate
Mode of Study 3 years full-time or 4 years with a placement (sandwich)/study abroad
Department Mathematics, Physics and Electrical Engineering
Location City Campus, Northumbria University
City Newcastle
Start September 2020
Current, Relevant and Inspiring
We continuously review and improve course content in consultation with our students and employers. To make sure we can inform you of any changes to your course register for updates on the course page.
Your Learning Experience find out about our distinctive approach at
www.northumbria.ac.uk/exp
Admissions Terms and Conditions - northumbria.ac.uk/terms
Fees and Funding - northumbria.ac.uk/fees
Admissions Policy - northumbria.ac.uk/adpolicy
Admissions Complaints Policy - northumbria.ac.uk/complaints