Skip navigation

If you’d like to receive the latest updates from Northumbria about our courses, events, finance & funding then enter your details below.

* At Northumbria we are strongly committed to protecting the privacy of personal data. To view the University’s Privacy Notice please click here

CLOSE

Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems.

This program continually has a very high pass and student satisfaction rate, leading to numerous Ph.D. studies and employment.

You will develop cross-discipline skills through multidisciplinary group work and an individual dissertation. You will learn essential skills such as information research, project planning and management, cost analysis, and budgeting. You will be actively involved within the Faculty Research Seminars, where you can broaden awareness and views across different research areas. 

You’ll benefit from the University’s excellent facilities that include specialist electrical and electronics laboratory resources. Northumbria has a well-established reputation for producing graduates who can apply their knowledge to generate creative solutions for sustainable electrical power systems.

On successfully completing the program, you will gain an understanding and comprehensive knowledge of current practice and new technological developments.

This full-time MSc Electrical Power Engineering program is also offered as a 240 credit two-year full-time program. This has the opportunity for a one-semester period of either study abroad, industrial work placement, or a research internship.

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to fully meet the CEng registration educational requirements.Courses such as the BEng (Hons) Electrical and Electronic Engineering are perfect to get you started on your journey to a Masters

 

Course Information

Level of Study
Postgraduate

Mode of Study
12 months full-time
2 other options available

Department
Mathematics, Physics and Electrical Engineering

Location
City Campus, Northumbria University

City
Newcastle

Start
September 2024

Fee Information

Module Information

Funding and Scholarships

Discover the funding options available to you.

Discover NU World / A virtual journey through everything Northumbria has to offer.

Explore our immersive 360 tours, informative subject videos, inspirational student profiles, ground-breaking research, and a range of life at university blogs videos and articles.

Entry Requirements 2024/25

Standard Entry

Applicants should normally have:

A minimum of a 2:2 honours degree in Electrical Engineering with a focus on Electrical Power. Other subject qualifications, equivalent professional qualifications and/or relevant work experience will be considered on an individual basis.

International qualifications:

If you have studied a non UK qualification, you can see how your qualifications compare to the standard entry criteria, by selecting the country that you received the qualification in, from our country pages. Visit www.northumbria.ac.uk/yourcountry

English language requirements:

International applicants are required to have a minimum overall IELTS (Academic) score of 6.5 with 5.5 in each component (or approved equivalent*).

 *The university accepts a large number of UK and International Qualifications in place of IELTS.  You can find details of acceptable tests and the required grades you will need in our English Language section. Visit www.northumbria.ac.uk/englishqualifications

Fees and Funding 2024/25 Entry

Full UK Fee: £10,460

Full EU Fee: £19,750

Full International Fee: £19,750



Scholarships and Discounts

Discover More about Fees, Scholarships and other Funding options for UK, EU and International applicants.

ADDITIONAL COSTS

There are no Additional Costs

If you’d like to receive the latest updates from Northumbria about our courses, events, finance & funding then enter your details below.

* At Northumbria we are strongly committed to protecting the privacy of personal data. To view the University’s Privacy Notice please click here

How to Apply

Please use the Apply Now button at the top of this page to submit your application.

Certain applications may need to be submitted via an external application system, such as UCAS, Lawcabs or DfE Apply.

The Apply Now button will redirect you to the relevant website if this is the case.

You can find further application advice, such as what to include in your application and what happens after you apply, on our Admissions Hub Admissions | Northumbria University



Modules

Module information is indicative and is reviewed annually therefore may be subject to change. Applicants will be informed if there are any changes.

KD7011 -

Wind Energy Conversion Systems (Core,20 Credits)

In this module you will consider the current practices and technological advances in the design, control, mathematical modelling, and performance optimisation of modern Wind Energy Conversion Systems. You will apply the necessary knowledge and gain understanding of the main concepts, methodologies, and future developments in this field. The module syllabus includes, but is not limited to, the following topics: wind energy resource; operating principles, characteristics and types of wind turbines; commercial and emerging distributed wind generators; power electronic converter topologies for variable speed systems; turbine aero-dynamics; grid-connected and stand-alone applications; research and development aspects; environmental and social context and issues; regulations and standards; economics, employment opportunities etc.

More information

KD7050 -

Photovoltaic System Technology (Core,20 Credits)

In this module, you will learn about the principles of photovoltaic (PV) system, design, operation and application. This will include consideration of the system components and the design and configuration of the solar array, together with examples of stand-alone, grid-connected and space applications. The module will also help you to appreciate the critical issues relating to the implementation of photovoltaic systems.

The topics within the module syllabus include:
• PV arrays and system components
• Grid connected PV systems, including large scale and building integrated systems
• Stand-alone PV systems and applications
• Concentrator PV systems
• PV arrays for satellite power supply
• Monitoring and performance analysis
• Operation and maintenance, system lifetime, standards and regulations

More information

KD7065 -

MSc Engineering Project (Core,60 Credits)

This module allows you to engender a spirit of enquiry and thirst for knowledge into a practical or theoretical dissertation. It includes aspects of information research, retrieval and critical appraisal; research enquiry based upon practical and theoretical skills development and critical discussion and appraisal of results; and an opportunity to compose a thesis or research style paper and to deliver a technical presentation on the project.

This module aims to make use of the knowledge and analytic skills developed throughout the programme to provide solutions to real-world industrial and research problems. In this module you will develop:

• Critical thinking on current engineering practices and their limitations, and exposure to state of the art technologies.

• Independent problem solving skills to develop and propose solutions to fundamental and subtle problems.

• An understanding and appreciation for the need and application of ethics within research and the wider society, and apply this in the context of the Engineering project undertaken.

• Project management skills to organise and plan tasks with clear objectives, outcomes and timescales, and analyse the true “cost” in order to achieve project outcomes.

• Key technical writing and presentation skills to a professional standard expected by both industry and academia.

These will provide a professional base from which you will be able to identify and use key knowledge, objectives, theories and techniques, plan and cost in order to bid, for funding, for future industrial and research projects. A key requirement of a professional engineer.

More information

KD7067 -

Engineering Research and Project Management (Core,20 Credits)

The module aims to develop a critical appreciation of the various principles underlying research that will enable you to discuss, evaluate and apply a variety of research approaches, methods and techniques to an engineering problem. It will also prepare you to consider, evaluate and apply the key knowledge and skills that underpin the professional practice of project management in an engineering context. In addition the broader key skills of knowledge and awareness of other none discipline areas are developed. The curriculum is delivered using two main thematic areas, which are delivered concurrently - Research and Professional Engineering business practice. In the Research theme the nature and practice of research are developed, you will use the university Library facilities to access information and make critical judgement of the information in the context of the subject specialism. The Professional Engineering Business practice theme introduces you to the practice of approaching all projects / research professionally being aware of planning, management and costs.

A detailed breakdown of the themes are:

Research:
- Generic research skills, information literacy. Appropriate literature search strategies, evaluation, reviewing and analysis methods.
- Specifying objectives which are specific, realistic, measurable under the SMART acronym, Endnote software

Professional Engineering business practice:
- Project Management, planning, time estimation and workloads, Gantt charts, CPM and PERT. Managing change, Managing budgets and realistic costing, MS project
- Legal, ethical or social issues in research and business, Risk analysis, classification and risk handling strategies
- Propose a professional business plan for research funding or any other funding

More information

KD7068 -

Renewable Energy Technologies for Electricity Supply (Core,20 Credits)

This module provides you with the opportunity to study the operation of the renewable energy technologies used for electricity generation, covering the aspects of resource assessment, operating characteristics, typical performance levels, economics, and environmental impact. You will also consider the context of the use of renewable energy systems, including aspects relating to power electronics techniques with grid connection and enabling technologies in power processing and energy storage.

The module introduces you to all the renewable technologies that can be used to generate electricity, including solar, water, wind, geothermal and biomass technologies. In addition, other type of renewable energy generation, power conversion and control techniques as well as energy storage technologies associated with the smart grids (e.g. electrical vehicles, power to hydrogen technologies etc) will be covered in this course module.

More information

KD7069 -

Power Electronics and Drive Systems (Core,20 Credits)

This module aims to provide you with thorough understanding and knowledge of existing and new concepts and technologies in electrical power engineering, and apply the knowledges on design and industrial applications of power electronics and electric motor drives. You will cover the principles of advanced control techniques as applied to these systems. The module is specifically concerned with the following subjects: power electronics devices and conventional converter topologies; pulse-width-modulation (PWM) techniques; state of the art practical switching power converters; power quality and harmonic analysis of various power conversion systems; power electronics control of renewable energy sources including solar, wind, and fuel-cell energy systems as well as electric and hybrid vehicles; electric machines and drives fundamentals; space-vector theory, control and applications of DC and AC drives; vector and field-oriented control of high performance induction and synchronous motor drives; applications and efficiency of electric drives; regulations, standards and other professional issues.

More information

KD7070 -

Smart Grids (Core,20 Credits)

This module aims to deepen your understanding and ability to study existing electrical power distribution networks and to consider new concepts and technologies for future ‘smart grid’ power networks. Emphasis will be given to the integration of renewable energy resources, electric vehicles, enabling technologies and the quality of supply. The module also covers advanced power electronics controllers and ICT techniques as applied to the smart grid.

This module also gives you the opportunity to critically analyse and develop an understanding of practical design and implementation issues, such as, quality of supply, cost considerations, regulations and standards. It explores the role of the built environment in the whole energy system, with a focus on the integration of renewables, demand response and static/ mobile energy storage. You will develop skills in modelling, and the visualisation and discussion of results, through applying your knowledge to develop techno-economic models of case studies.

Topics covered will be reinforced by the use of real-world examples and case studies. Published papers and simulation will be uploaded in elp and it can provide a good experience for students to see where the proposed algorithms/ methods will be applied.

More information

KL7003 -

Academic Language Skills for Mathematics, Physics and Electrical Engineering (Core – for International and EU students only,0 Credits)

Academic skills when studying away from your home institution can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject area in the Department of Architecture and Built Environment. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.

The topics you will cover on the module include:

• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’.
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Discussing ethical issues in research, and analysing results.
• Describing bias and limitations of research.
• Developing self-reflection skills.

More information

Modules

Module information is indicative and is reviewed annually therefore may be subject to change. Applicants will be informed if there are any changes.

KD7011 -

Wind Energy Conversion Systems (Core,20 Credits)

In this module you will consider the current practices and technological advances in the design, control, mathematical modelling, and performance optimisation of modern Wind Energy Conversion Systems. You will apply the necessary knowledge and gain understanding of the main concepts, methodologies, and future developments in this field. The module syllabus includes, but is not limited to, the following topics: wind energy resource; operating principles, characteristics and types of wind turbines; commercial and emerging distributed wind generators; power electronic converter topologies for variable speed systems; turbine aero-dynamics; grid-connected and stand-alone applications; research and development aspects; environmental and social context and issues; regulations and standards; economics, employment opportunities etc.

More information

KD7050 -

Photovoltaic System Technology (Core,20 Credits)

In this module, you will learn about the principles of photovoltaic (PV) system, design, operation and application. This will include consideration of the system components and the design and configuration of the solar array, together with examples of stand-alone, grid-connected and space applications. The module will also help you to appreciate the critical issues relating to the implementation of photovoltaic systems.

The topics within the module syllabus include:
• PV arrays and system components
• Grid connected PV systems, including large scale and building integrated systems
• Stand-alone PV systems and applications
• Concentrator PV systems
• PV arrays for satellite power supply
• Monitoring and performance analysis
• Operation and maintenance, system lifetime, standards and regulations

More information

KD7065 -

MSc Engineering Project (Core,60 Credits)

This module allows you to engender a spirit of enquiry and thirst for knowledge into a practical or theoretical dissertation. It includes aspects of information research, retrieval and critical appraisal; research enquiry based upon practical and theoretical skills development and critical discussion and appraisal of results; and an opportunity to compose a thesis or research style paper and to deliver a technical presentation on the project.

This module aims to make use of the knowledge and analytic skills developed throughout the programme to provide solutions to real-world industrial and research problems. In this module you will develop:

• Critical thinking on current engineering practices and their limitations, and exposure to state of the art technologies.

• Independent problem solving skills to develop and propose solutions to fundamental and subtle problems.

• An understanding and appreciation for the need and application of ethics within research and the wider society, and apply this in the context of the Engineering project undertaken.

• Project management skills to organise and plan tasks with clear objectives, outcomes and timescales, and analyse the true “cost” in order to achieve project outcomes.

• Key technical writing and presentation skills to a professional standard expected by both industry and academia.

These will provide a professional base from which you will be able to identify and use key knowledge, objectives, theories and techniques, plan and cost in order to bid, for funding, for future industrial and research projects. A key requirement of a professional engineer.

More information

KD7067 -

Engineering Research and Project Management (Core,20 Credits)

The module aims to develop a critical appreciation of the various principles underlying research that will enable you to discuss, evaluate and apply a variety of research approaches, methods and techniques to an engineering problem. It will also prepare you to consider, evaluate and apply the key knowledge and skills that underpin the professional practice of project management in an engineering context. In addition the broader key skills of knowledge and awareness of other none discipline areas are developed. The curriculum is delivered using two main thematic areas, which are delivered concurrently - Research and Professional Engineering business practice. In the Research theme the nature and practice of research are developed, you will use the university Library facilities to access information and make critical judgement of the information in the context of the subject specialism. The Professional Engineering Business practice theme introduces you to the practice of approaching all projects / research professionally being aware of planning, management and costs.

A detailed breakdown of the themes are:

Research:
- Generic research skills, information literacy. Appropriate literature search strategies, evaluation, reviewing and analysis methods.
- Specifying objectives which are specific, realistic, measurable under the SMART acronym, Endnote software

Professional Engineering business practice:
- Project Management, planning, time estimation and workloads, Gantt charts, CPM and PERT. Managing change, Managing budgets and realistic costing, MS project
- Legal, ethical or social issues in research and business, Risk analysis, classification and risk handling strategies
- Propose a professional business plan for research funding or any other funding

More information

KD7068 -

Renewable Energy Technologies for Electricity Supply (Core,20 Credits)

This module provides you with the opportunity to study the operation of the renewable energy technologies used for electricity generation, covering the aspects of resource assessment, operating characteristics, typical performance levels, economics, and environmental impact. You will also consider the context of the use of renewable energy systems, including aspects relating to power electronics techniques with grid connection and enabling technologies in power processing and energy storage.

The module introduces you to all the renewable technologies that can be used to generate electricity, including solar, water, wind, geothermal and biomass technologies. In addition, other type of renewable energy generation, power conversion and control techniques as well as energy storage technologies associated with the smart grids (e.g. electrical vehicles, power to hydrogen technologies etc) will be covered in this course module.

More information

KD7069 -

Power Electronics and Drive Systems (Core,20 Credits)

This module aims to provide you with thorough understanding and knowledge of existing and new concepts and technologies in electrical power engineering, and apply the knowledges on design and industrial applications of power electronics and electric motor drives. You will cover the principles of advanced control techniques as applied to these systems. The module is specifically concerned with the following subjects: power electronics devices and conventional converter topologies; pulse-width-modulation (PWM) techniques; state of the art practical switching power converters; power quality and harmonic analysis of various power conversion systems; power electronics control of renewable energy sources including solar, wind, and fuel-cell energy systems as well as electric and hybrid vehicles; electric machines and drives fundamentals; space-vector theory, control and applications of DC and AC drives; vector and field-oriented control of high performance induction and synchronous motor drives; applications and efficiency of electric drives; regulations, standards and other professional issues.

More information

KD7070 -

Smart Grids (Core,20 Credits)

This module aims to deepen your understanding and ability to study existing electrical power distribution networks and to consider new concepts and technologies for future ‘smart grid’ power networks. Emphasis will be given to the integration of renewable energy resources, electric vehicles, enabling technologies and the quality of supply. The module also covers advanced power electronics controllers and ICT techniques as applied to the smart grid.

This module also gives you the opportunity to critically analyse and develop an understanding of practical design and implementation issues, such as, quality of supply, cost considerations, regulations and standards. It explores the role of the built environment in the whole energy system, with a focus on the integration of renewables, demand response and static/ mobile energy storage. You will develop skills in modelling, and the visualisation and discussion of results, through applying your knowledge to develop techno-economic models of case studies.

Topics covered will be reinforced by the use of real-world examples and case studies. Published papers and simulation will be uploaded in elp and it can provide a good experience for students to see where the proposed algorithms/ methods will be applied.

More information

KL7003 -

Academic Language Skills for Mathematics, Physics and Electrical Engineering (Core – for International and EU students only,0 Credits)

Academic skills when studying away from your home institution can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject area in the Department of Architecture and Built Environment. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.

The topics you will cover on the module include:

• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’.
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Discussing ethical issues in research, and analysing results.
• Describing bias and limitations of research.
• Developing self-reflection skills.

More information

Study Options

The following alternative study options are available for this course:

Any Questions?

Our Applicant Services team will be happy to help.  They can be contacted on 0191 406 0901 or by using our Contact Form.



Accessibility and Student Inclusion

Northumbria University is committed to developing an inclusive, diverse and accessible campus and wider University community and are determined to ensure that opportunities we provide are open to all.

We are proud to work in partnership with AccessAble to provide Detailed Access Guides to our buildings and facilities across our City, Coach Lane and London Campuses. A Detailed Access Guide lets you know what access will be like when you visit somewhere. It looks at the route you will use getting in and what is available inside. All guides have Accessibility Symbols that give you a quick overview of what is available, and photographs to show you what to expect. The guides are produced by trained surveyors who visit our campuses annually to ensure you have trusted and accurate information.

You can use Northumbria’s AccessAble Guides anytime to check the accessibility of a building or facility and to plan your routes and journeys. Search by location, building or accessibility feature to find the information you need. 

We are dedicated to helping students who may require additional support during their student journey and offer 1-1 advice and guidance appropriate to individual requirements. If you feel you may need additional support you can find out more about what we offer here where you can also contact us with any questions you may have:

Accessibility support

Student Inclusion support




All information is accurate at the time of sharing. 

Full time Courses are primarily delivered via on-campus face to face learning but could include elements of online learning. Most courses run as planned and as promoted on our website and via our marketing materials, but if there are any substantial changes (as determined by the Competition and Markets Authority) to a course or there is the potential that course may be withdrawn, we will notify all affected applicants as soon as possible with advice and guidance regarding their options. It is also important to be aware that optional modules listed on course pages may be subject to change depending on uptake numbers each year.  

Contact time is subject to increase or decrease in line with possible restrictions imposed by the government or the University in the interest of maintaining the health and safety and wellbeing of students, staff, and visitors if this is deemed necessary in future.

 

Your Learning Experience

Find out about our distinctive approach at 
www.northumbria.ac.uk/exp

Admissions Terms and Conditions
northumbria.ac.uk/terms

Fees and Funding
northumbria.ac.uk/fees

Admissions Policy
northumbria.ac.uk/adpolicy

Admissions Complaints Policy
northumbria.ac.uk/complaints


If you’d like to receive the latest updates from Northumbria about our courses, events, finance & funding then enter your details below.

* At Northumbria we are strongly committed to protecting the privacy of personal data. To view the University’s Privacy Notice please click here

a sign in front of a crowd
+

Northumbria Open Days

Open Days are a great way for you to get a feel of the University, the city of Newcastle upon Tyne and the course(s) you are interested in.

a person sitting at a table using a laptop
+
NU World Virtual Tours
+

Virtual Tour

Get an insight into life at Northumbria at the click of a button! Come and explore our videos and 360 panoramas to immerse yourself in our campuses and get a feel for what it is like studying here using our interactive virtual tour.

Back to top