- Home
-
Study
Study
Interested in studying at Northumbria? With 31,500 students, Northumbria is one of the largest universities in the country, offering courses on either a full-time, part-time or distance learning basis.
Studying at Northumbria-
UCAS Clearing 2023
- Clearing Courses
- Clearing 2023 FAQS
- UCAS Tariff Points
- Confirmation
- Clearing Case Studies
-
Undergraduate
- Undergraduate Study Degree
- Undergraduate Open Day & Events
- Application Guides
- Northumbria University UCAS Exhibitions
- Foundation Years
- Undergraduate Fees & Funding
- School & College Outreach
- Continuing Professional Development
-
Postgraduate
- Postgraduate Study Degree
- Postgraduate Research Degrees
- Postgraduate Open Days and Events
- Postgraduate Fees & Funding
- Flexible Learning
- Thinking about a Masters?
- Continuing Professional Development
- Change Direction
-
Student Life
- The Hub - Student Blog
- Accommodation
- Life in Newcastle
- Support for Students
- Careers
- Information for Parents
- Students' Union
- Northumbria Sport
-
-
International
International
Northumbria’s global footprint touches every continent across the world, through our global partnerships across 17 institutions in 10 countries, to our 277,000 strong alumni community and 150 recruitment partners – we prepare our students for the challenges of tomorrow. Discover more about how to join Northumbria’s global family or our partnerships.
View our Global Footprint-
Applying to Northumbria
- European Union
- Our London Campus
- Northumbria in Amsterdam
- Northumbria Pathway
- International Events
- Northumbria and your Country
- Entry Requirements
- Agent Network
-
Northumbria Language Centre
- Faculty Requirements
- Acceptable English Requirements
- Pre-Sessional English and Study Skills
- Academic Language Skills Programmes (ALS)
-
International & EU Fees, Funding & Scholarships
- EU/International Undergraduate Fees
- EU/International Undergraduate Funding
- EU/International Masters Fees
- EU/International Masters Funding
- EU/International Postgraduate Research Fees
- EU/International Postgraduate Research Funding
- International Money Matters
-
Life at Northumbria
- International student support
- The Hub - Student Blog
- Careers
-
International Mobility
- Current Northumbria Students
- Incoming Exchange Students
-
-
Business
Business
The world is changing faster than ever before. The future is there to be won by organisations who find ways to turn today's possibilities into tomorrows competitive edge. In a connected world, collaboration can be the key to success.
More on our Business Services -
Research
Research
Northumbria is a research-rich, business-focused, professional university with a global reputation for academic quality. We conduct ground-breaking research that is responsive to the science & technology, health & well being, economic and social and arts & cultural needs for the communities
Discover more about our Research -
About Us
-
About Northumbria
- Our Vision
- Our Staff
- Our Partners
- Student Profiles
- Alumni Profiles
- Leadership & Governance
- Academic Departments
- University Services
- History of Northumbria
- Contact us
- Online Shop
-
-
Alumni
Alumni
Northumbria University is renowned for the calibre of its business-ready graduates. Our alumni network has over 233,000 graduates based in 177 countries worldwide in a range of sectors, our alumni are making a real impact on the world.
Our Alumni - Work For Us
What will I learn on this module?
The module is designed to provide you with the advanced mathematical and statistical techniques required to underpin study of physics at level 5 and beyond. Techniques covered will include Matrices, Fourier Series and Fourier and Laplace Transforms, Probability distributions, and an introduction to vector calculus (including div, grad and curl).
Students will develop skills in the use of advanced mathematical and statistical techniques, applying suitable mathematical calculations over a range of key topics, including explaining how a periodic waveform can be represented as an infinite series of sinusoids, and applying Fourier Transforms. The concepts of the eigenvalue and eigenvectors of a matrix, and how these can be found by algebraic means will also be covered. Finally, students will be introduced to vector calculus and vector operators, including div, grad and curl, and the Kronecker delta and Levi-Civita epsilon.
Linear Algebra
Algebraic evaluation of the eigenvalues and eigenvectors of a matrix (i.e. Matrices to the level of eigenvalues and eigenvectors). Application to the solution of a system of linear ordinary differential equations.
Vector Calculus
Coordinate systems; line, surface and volume integrals; Vector operators Grad, Div and Curl; Gauss’ (Divergence) Theorem, Stokes’ Theorem; Introduction to Cartesian tensors. Applications of vector calculus.
Fourier Series and Fourier and Laplace Transforms
Fourier series and periodic functions. Full-range and half-range series. Even and odd functions. Coefficients in complex form. Application to the solution of partial differential equations by the method of separation of variables. Fourier Transforms. Laplace Transforms. The convolution theorem. An introduction to the solution of partial differential equations.
Probability Distributions
Sample space, types of events, definition of probability, addition and multiplication laws, conditional probability. Discrete probability distributions including Binomial, Poisson. Continuous probability distributions including the Normal distribution.
How will I learn on this module?
A wide range of learning and teaching approaches are used in this module. The module will be delivered using a combination of lectures, set work and skills periods in which you will be able to obtain help with problems associated with the module. Lectures allow you to experience and understand the formalism of advanced mathematical techniques and include relevant examples. You will have an opportunity to enhance your understanding of the subject through seminars which promote independent learning and tackle relevant problems. You will be provided with formative feedback on problems in seminars and have the opportunity to problem solve within peer groups. The mathematical rigour associated with this module naturally increases your potential for employability and is a highly transferable skill.
The module will be assessed by coursework (30%) and formal examination (70%). Exam feedback will provided individually and also generically to indicate where the cohort has a strong or a weaker answer to examination questions. Written feedback will be provided on the coursework. Formative feedback will be provided during the seminars.
Formative feedback will be provided on seminar work which will include problems designed to aid your learning and understanding.
Written feedback will be provided on the coursework. Exam feedback will provided individually and also generically to indicate where the cohort has a strong or a weaker answer to examination questions.
How will I be supported academically on this module?
In addition to direct contact with the module team during lectures and seminars, you will be encouraged to develop your curiosity by making direct contact with the module team either via email or the open door policy operated throughout the programme. You will also be regularly referred to supporting resources including relevant texts and relevant multimedia materials.
References to these resources will be made available through the e-learning portal and in lectures and seminars.
What will I be expected to read on this module?
All modules at Northumbria include a range of reading materials that students are expected to engage with. The reading list for this module can be found at: http://readinglists.northumbria.ac.uk
(Reading List service online guide for academic staff this containing contact details for the Reading List team – http://library.northumbria.ac.uk/readinglists)
What will I be expected to achieve?
Knowledge & Understanding:
1. Determine the eigenvalues and eigenvectors of a matrix and use them to solve a system of linear ordinary differential equations.
2. Determine the Fourier Series of a periodic waveform, and apply and obtain Fourier Transforms.
3. Apply vector calculus and manipulate Cartesian tensors.
4. Apply appropriate statistical methods to statistics problems.
Intellectual / Professional skills & abilities:
•
Personal Values Attributes (Global / Cultural awareness, Ethics, Curiosity) (PVA):
How will I be assessed?
SUMMATIVE
1. Coursework (30%) – 1, 2, 3, 4
2. Examination (70%) – 1, 2, 3, 4
FORMATIVE
1. Seminars – 1, 2, 3, 4
Students will be assessed by coursework (30%) and a formal examination (70%). The coursework will provide an opportunity for the student to demonstrate knowledge of the Fourier and Laplace Transforms topics. The examination will cover all topics from the module.
Formative feedback will be provided on seminar work which will include problems designed to aid student understanding. Written feedback will be provided on the coursework.
Pre-requisite(s)
None
Co-requisite(s)
None
Module abstract
The module is designed to provide you with the advanced mathematical and statistical techniques required to underpin study of physics at level 5 and beyond. You will develop your abilities in the utilisation of advanced mathematical and statistical techniques, applying suitable mathematical calculations over a range of key topics, including explaining how a periodic waveform can be represented as an infinite series of sinusoids, and applying Fourier Transforms. We will cover the concepts of the eigenvalue and eigenvectors of a matrix, and how these can be found by algebraic means. Finally, you will be introduced to vector calculus and vector operators, including div, grad and curl, and the Kronecker delta and Levi-Civita epsilon. Assessment of the module is by one class test (30%) and one formal examination (70%) and the module will be delivered using a combination of lectures and seminars.
Course info
UCAS Code F3F5
Credits 20
Level of Study Undergraduate
Mode of Study 3 years full-time or 4 years with a placement (sandwich)/study abroad
Department Mathematics, Physics and Electrical Engineering
Location City Campus, Northumbria University
City Newcastle
Start September 2024
Full time Courses starting in 2023 are primarily delivered via on-campus face to face learning but may include elements of online learning. We continue to monitor government and local authority guidance in relation to Covid-19 and we are ready and able to flex accordingly to ensure the health and safety of our students and staff.
Contact time is subject to increase or decrease in line with additional restrictions imposed by the government or the University in the interest of maintaining the health and safety and wellbeing of students, staff, and visitors, potentially to a full online offer, should further restrictions be deemed necessary in future. Our online activity will be delivered through Blackboard Ultra, enabling collaboration, connection and engagement with materials and people.
Current, Relevant and Inspiring
We continuously review and improve course content in consultation with our students and employers. To make sure we can inform you of any changes to your course register for updates on the course page.
Your Learning Experience
Find out about our distinctive approach at
www.northumbria.ac.uk/exp
Admissions Terms and Conditions
northumbria.ac.uk/terms
Fees and Funding
northumbria.ac.uk/fees
Admissions Policy
northumbria.ac.uk/adpolicy
Admissions Complaints Policy
northumbria.ac.uk/complaints