BEng (Hons) Electrical and Electronic Engineering
Option for Placement Year
Option for Study Abroad
Option for Placement Year
Option for Study Abroad
Visit an Open Day to get an insight into what it's like to study Electrical and Electronic Engineering. Speak to staff and students from the course and get a tour of the facilities.
112 UCAS Tariff points
From a combination of acceptable Level 3 qualifications which may include: A-level, T Level, BTEC Diplomas/Extended Diplomas, Scottish and Irish Highers, Access to HE Diplomas, or the International Baccalaureate.
Find out how many points your qualifications are worth by using the UCAS Tariff calculator: www.ucas.com/ucas/tariff-calculator
Northumbria University is committed to supporting all individuals to achieve their ambitions. We have a range of schemes and alternative offers to make sure as many individuals as possible are given an opportunity to study at our University regardless of personal circumstances or background. To find out more, review our Northumbria Entry Requirement Essential Information page for further details www.northumbria.ac.uk/entryrequirementsinfo
Subject Requirements:
Applicants will need A-level Mathematics and another analytical science subject (Biology, Chemistry, Computer Sciences, Physics or Technology), or recognised equivalents.
GCSE Requirements:
Applicants will need Maths and English Language at minimum grade 4/C, or an equivalent.
Additional Requirements:
There are no additional requirements for this course.
International Qualifications:
We welcome applicants with a range of qualifications which may not match those shown above.
If you have qualifications from outside the UK, find out what you need by visiting www.northumbria.ac.uk/yourcountry
English Language Requirements:
International applicants should have a minimum overall IELTS (Academic) score of 5.5 with 5.5 in each component (or an approved equivalent*).
*The university accepts a large number of UK and International Qualifications in place of IELTS. You can find details of acceptable tests and the required grades in our English Language section: www.northumbria.ac.uk/englishqualifications
UK Fee in Year 1: £9,250
* The maximum tuition fee that we are permitted to charge for UK students is set by government. Tuition fees may increase in each subsequent academic year of your course, these are subject to government regulations and in line with inflation.
International Fee in Year 1:
ADDITIONAL COSTS
There are no Additional Costs
* At Northumbria we are strongly committed to protecting the privacy of personal data. To view the University’s Privacy Notice please click here
Please use the Apply Now button at the top of this page to submit your application.
Certain applications may need to be submitted via an external application system, such as UCAS, Lawcabs or DfE Apply.
The Apply Now button will redirect you to the relevant website if this is the case.
You can find further application advice, such as what to include in your application and what happens after you apply, on our Admissions Hub Admissions | Northumbria University
Module information is indicative and is reviewed annually therefore may be subject to change. Applicants will be informed if there are any changes.
KC4010 -
Engineering Mathematics (Core,20 Credits)
This course will introduce and delve into the following maths concepts
Basic algebra and trigonometry
This course develops the foundational mathematics skills and language set that underpin analytical sciences. This will include the transposition and manipulation of algebraic expressions, the notion of functions and the basics of trigonometry
Basic calculus
We will define the derivative, how one quantity can change with respect to another, and learn how to compute these. We will also encounter the integral, related to areas and averages, and tackle computations involving these
Complex numbers
This course introduces complex numbers, important in electrical engineering and beyond, and teaches students about their property, their algebra and how these numbers can be understood geometrically.
Further Calculus
Further into the course, we will build upon our understanding of calculus with more advanced methods, introducing partial differentiation for functions of multiple variables, as well as more advanced integral techniques to simplify complex problems.
Matrices and Vectors
A fundamental aspect of modern computing, we will define what vectors and matrices are and how one can undertake computations involving these and their special properties. We will demonstrate how large systems of equations can be formulated as matrix-vector problems, making them far easier to solve.
Differential Equations
A cornerstone of modern physics, we will learn how to identify and solve differential equations by several techniques. We will also encounter the wave equation, which underpins a great number of applications, and learn methods as to how it can be solved and understood.
KD4008 -
Computer Programming (Core,20 Credits)
Within this module you will cover the design and development of C based code for both a standard PC and an embedded system.
The module syllabus us based but not exclusively on the following:
• Introduction of computer systems, the architecture and types from standard PCs to embedded systems,
• Code development from specifications through Pseudo code to a top-down or bottom-up based design,
• Language operators for example, if-then-else, switch-case, do-while, for,
• Data types for systems including bit length, and data pointer structures and use,
• Use of information hiding in functions, with strongly typed designs,
• File system access for a PC and for an embedded system where files may be more abstract handles,
• Controlling hardware on an embedded system for example and ADC or DAC on a microcontroller,
• The use of IO lines and interrupt structures in low level programming.
Typically learning in the module will be based on simple case studies and example such that the above knowledge can be applied to solve a real world problem within a defined engineering context. An example of such a real-world problem would be a Traffic Light controller, or Home Burglar Alarm system.
KD4009 -
Digital Electronics and Communications (Core,20 Credits)
The students will gain fundamental knowledge as follows:
Within the digital electronics aspect of this module the student will learn
The operation of logic gates AND,NAND,OR,NOR,XOR.
The use of truth tables and logic gates to solve combinational logic problems.
Boolean algebra and the use of Boolean algebra to simplify logic expressions prior to implementation.
The use of Karnaugh maps to simplify logic expressions prior to implementation.
Implementation of adders/subtractors using logic gates.
Using logic gates to implement S-R flip flop, J-K flip flop and D-type flip flop.
Using flip flops to develop asynchronous counters and shift registers.
Within the communication aspects of this module the student will learn
Typical types of communication techniques
Characteristics of analogue signals, their time- and frequency-domain representations
Importance of bandwidth
Characteristics of digital signals, frequency domain representation of digital signals
Evaluation of basic transmission performance in communications
Signal conversion techniques on communications
Analog and digital modulation
Encoding
Multiplexing
In addition to the gained knowledge, the students will apply this knowledge to analyse and design digital electronics circuits and communication systems. The design of analysis aspects will be targeted especially in the laboratory sessions.
KD4010 -
Electricity, Magnetism and Electronics (Core,20 Credits)
This module will introduce you to fundamental electromagnetism, electrical circuit theory and analogue electronics. Through a combination of lectures, labs and technology-enhanced resources, you will learn to analyse basic DC and AC circuits and to familiarise with fundamental electronic components such as operational amplifiers and semiconductor diodes. This module will provide you with core knowledge, and experimental, numerical and analytical skills to tackle problems in electrical and electronic principles, thus establishing firm foundations for future employability.
Electricity and Magnetism (25%)
Electrostatics: Coulomb's law of electrostatic forces, superposition of electrostatic forces and the electric field, electric flux, Gauss’s law and its applications to calculate electric field associated with the continuous charge distributions; Concept of electric potential and its relation to the electric field; Energy stored in an electric field; Introduction to magnetostatics.
DC and AC Circuit Theory (50%)
Introduction to ideal linear elements: resistor, inductor and capacitor. Transient currents across ideal elements. Current and voltage division rule. Applications of superposition: Kirchhoff’s law.
Properties of sinusoidal and periodic waveforms, average, RMS values. Phasors and phasor diagrams, and j operator. Complex impedance, impedance diagrams.
Applications to series circuits. Power in AC circuits, power factor, apparent power, active power, and reactive power. Complex admittance and applications to parallel
circuits. An introduction to series and parallel RLC circuits.
Analogue Electronics (25%)
Introduction to the properties of an ideal operational amplifier. Simple inverting and non-inverting applications using virtual earth principles. Properties and parameters of a non-ideal op-amplifier including gain-bandwidth. Op-amplifier applications including summing, integrator and differentiator.
KD4011 -
Fundamentals of Energy Systems (Core,20 Credits)
This is a project-oriented design-based learning module, which introduces you to the fundamental concepts of energy systems. The underlying concepts aligning with electrical engineering are illustrated using examples from electricity generation, transmission, distribution, consumption and storage. Focus is given to develop unique design skills over a wide range of scenarios.
Basics of Electrical and Electronic Engineering
Voltage, current, power and energy. Conservation of energy. Basic electromagnetism. Electric charge: conductors, insulators and semiconductors. Electric field. Electrostatic potential energy and potential. Magnetic field and magnetic flux density. Electromagnetic induction: Faraday’s law and Lenz’s law. Electric generator. Electric and Magnetic Circuits. Basics of electric motors and generators.
Three phase power and power electronic devices
Production of three-phase power. Phase and line voltages and currents in star and delta systems. Measurements of three-phase power. Introduction to single-phase transformer: principle, construction, referring of impedances, losses and efficiency, and equivalent circuit. Transformer Connections (Autotransformers and three-phase transformers). Overview of power electronics: Rectifiers and inverters for renewable energy integration
Power generation, energy efficiency and energy storage
Overview of conventional power generation system: gas and coal-fired power stations, combined heat and power, IGCC, nuclear power. Loads: different types of loads, load curve and load factor. Fundamentals of power transmission and distribution. Fundamentals of wind energy and solar energy conversion systems. Energy storage technologies.
KD4014 -
Research, Analysis and Presentation (Core,20 Credits)
This module aims to introduce you to gathering research data from either laboratory or reference material, analysing the acquired data in an appropriate manner and then presenting the key findings. Formal training in experimental techniques acquired in this module will support your professional and personal skills.
Research
You will learn about methods to conduct research methods based on an open-ended research question provided by the tutors. You will learn: where and how to gather information, which can be applied to generate solutions to real world problems. The ability to select from a number of research methods is important, for example, the ability to research a method to design simple laboratory tests.
Analysis
Correct use of units and symbols for physics and engineering along with the use of data analysis techniques. Specific techniques may include, for example, mean and standard deviation, simple regressive techniques, log-log and log-linear relationships, and error analysis. Simple measurement techniques may include, for example, measuring velocity, voltage, current and power. Key factors in measurement include the need to analyse the accuracy, errors, resolution and the need for calibration. You will be introduced to suitable computational packages for data analysis and processing in physics and engineering.
Presentation
You will develop key communication skills in report writing, laboratory book writing (of laboratory data), and the presentation of information both visually (via graphs and diagrams) and using text. You will develop skills in processing information, for example, highlighting key findings and drawing suitable conclusions from a piece of work, and presenting the information in both written and oral format.
Group work
Communicating and working effectively in teams is a highly sought-after skill by employers. While working in a group with other students, you will develop skills in communication and project management. You will be responsible for managing individual tasks while ensuring completion of the group tasks. You will also be introduced to tools to keep track of your professional development throughout your programme
KL5001 -
Academic Language Skills for Mathematics, Physics and Electrical Engineering (Core – for International and EU students only,0 Credits)
Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.
The topics you will cover on the module include:
• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.
KC5002 -
Advanced Engineering Mathematics (Core,20 Credits)
This module is designed to provide you with two key concepts in Mathematics: Laplace Transforms and periodic functions. You will learn their use in solving ordinary differential equations arising from real world physical problems, and their use in describing the behaviour of simple control systems. The concept of the harmonic components of a periodic waveform will be introduced to you and be shown how this is useful in matching general solutions of partial differential equations to particular boundary or initial conditions. The solution of systems of linear ordinary differential equations using matrix methods will also be considered.
Outline Syllabus
Laplace Transforms: Definition, simple transforms, linearity. First shift theorem. Inverse transforms, linearity, use of the first shift theorem and partial fractions. Transforms of derivatives. Transforms of an integral. The Heaviside Unit Step function. The second shift theorem. Solution of linear ordinary differential equations with constant coefficients, including systems of such equations. The Delta function and the Impulse Response function; transfer function. Initial and final-value theorems. Convolution and the convolution theorem. Poles of the transfer function and stability. Steady-state response. (50%)
Periodic functions and Fourier series: Full-range and half-range series, even and odd functions and coefficients in complex form. Application to the solution of partial differential equations by the method of separation of variables. (25%)
Matrices, eigenvalues and eigenvectors: Algebraic evaluation of the eigenvalues and eigenvectors of a matrix, application to the solution of a system of linear ordinary differential equations. (25%)
The module will be delivered using a combination of lectures and seminars. Assessment is by formal examination.
KD5064 -
Analogue Electronics and Instrumentation (Core,20 Credits)
You will learn on module key technical content around two themes that of analogue electronics and instrumentation. These are important topics for electrical engineering covering the key basics of analogue design and the use of analogue signals used in instrumentation. Amplifiers and signal conditioning devices will be covered that convert the sensor output into usable signals for typical process control platforms. Operational amplifiers will be used extensively in the module, leading up to an understanding of discrete electronic transistor design.
Operational Amplifiers - Operational amplifier applications applied to instrumentation signals, active filter circuits, and instrumentation amplifiers. Filter considerations including magnitude and phase bode diagrams, and compensation methods.
Sensors - Temperature, strain and light sensor systems looking into devices and signals. Additional sensors considered may also include slot encoders, accelerometers and hall-effect devices.
Instrumentation - Amplifiers and signal conditioning demonstrates the ability for signal conversion and used in real world environments. Operational amplifiers will be expanded upon with the design of the instrumentation amplifier to highlight the performance improvements. Noise analysis will be introduced to show how instrumentation techniques reduce this phenomenon.
Discrete Electronics - Operational amplifiers are made from discrete elements; these building blocks will be explained include the Bipolar Junction Transistors (BJTs) and the Field Effect Transistor (FET). Transistor applications may include current sources, current sinks, and differential input stages.
KD5065 -
C Programming and Digital Systems (Core,20 Credits)
This module aims to further develop your capabilities in the areas of digital systems, building on the hardware and software design and development techniques covered in previous related module(s).
In the Hardware Description Language (HDL) section, you learn about technology and architecture. The concept of HDL as a tool to simulate, design and document digital systems is introduced and you will learn how to design, specify, and apply digital combinational and sequential building blocks in isolation, and as part of a larger system. Then the module introduces an industry standard HDL known as Verilog, and shows how it can be used to describe, at the gate and logic expression level, digital building blocks such as decoders, multiplexers, encoders, shift registers and counters. During the course, you are given the opportunity to explore designs by means of simulation using industry standard design tools from raw Verilog code to the simulation state. You will learn how the HDL code is used for actual low-level hardware design implementation and they will also cover other practical aspects of digital hardware design, such as logic hazards, propagation delays and interfacing with other digital modules.
You will also cover techniques and tools that help you with developing your Verilog code including:
1- K-map simplification
2- Timing analysis
3- Synthesizable vs non-synthesizable code
4- Finite state machine (FSM) and state diagram
5- Using built-in simulation task/function
6- IP blocks
7- Icarus Verilog
This part of the module comes with a set of workshops specifically arranged to teach you how to use designated tools for simulation and programming a FPGA device.
In the Programming Language section, you will learn about the architecture of microcontrollers and concept of embedded systems. ARM-based microcontroller as well as various ARM-compatible operating systems will be introduced. You will learn about different types of compilers and toolchain, and they will use the C++ language to program an ARM platform to program hardware to perform high-level tasks such as IO port access, serial connection, memory management, FSM, and string manipulation. An overview of C++ language will be given to you and advanced topics such as pointer and classes in C++ are taught. Controlling peripherals such as analogue to digital converter (ADC), digital to analogue converter (DAC), WiFi, X-Bee is introduced as well as data communication protocols such as I2C, and SPI. you will learn how to communicate with a PC application based on Python, Matlab, or LabVIEW through wired connection. The IoT technology and cloud services for microcontroller platforms are also introduced and you will become familiar with AWS and Azure.
The You will also cover techniques and tools that help you with developing your C++ code including:
1- Debugging
2- Linter
3- QEMU
4- PlatformIO
This part of the module comes with a set of workshops specifically arranged to teach you how to use designated tools for simulation and programming an ARM platform.
In the PCB Design section, you will learn how to manifest your digital system concepts into an actual PCB. You will start by learning about design level and component level considerations. Then they will learn how to find appropriate component for the board and create the schematic to describe the circuit netlist. The component footprints are introduced, and you learn how to create the PCB layout and route it. Next, they are taught how to prepare your design for manufacturing and lastly what are the required post-manufacturing tasks.
You will also cover techniques and tools that help you with developing your PCB design including:
1- High-speed design tips
2- Track calculation
3- EMI and EMC
This part of the module comes with a set of workshops specifically arranged to teach you how to use designated tools for building a schematic and PCB in software environment.
In the Code Development section, you will learn how to develop a code from a concept. You will get familiar with the concept of structured programming and code hierarchy and learn about techniques to produce clean code. Then the concepts of test code, debugging, and version control are introduced, and tips are given on how to perform code maintenance. At the end tyou will learn how to create a customised library for the digital board that they designed in PCB Design section.
You will also cover techniques and tools that help you with developing your code including:
1- Flowchart
2- UML
3- Git
This part of the module comes with a set of workshops specifically arranged to teach you how to use designated tools for developing a library code.
KD5066 -
Communication Systems (Core,20 Credits)
In this module you will learn about electronic communications. You will learn fundamental techniques that are used in communication systems for sending information between two devices. You will learn a number of techniques that are used in modern day communication systems to transfer information both via a physical connection such as a cable and also via a wireless connection.
Two of the key themes of electronic communications that you will study are Analogue communication and Digital communication. In both themes you will learn a number of key engineering processes that are fundamental to communications. In analogue communications you will learn the key physical and electronic processes necessary to transfer information in an analogue form. You will also explore current technologies and techniques in radio and satellite communications. In the digital communications topic, the knowledge that you learn in analogue communications will be expanded to a higher level to allow you to understand the key requirements for digital communication. We will examine how communication techniques have evolved over the years to allow users to transfer vast amounts of information at ever increasing speeds.
Three key areas within these two topics are identified:
ANALOGUE COMMUNICATION SYSTEMS
Amplitude Modulation; comparison of various forms of AM, demodulation, frequency and phase insertion errors, examples and applications. Frequency modulation; NBFM, WBFM, spectra and bandwidth, examples and applications. Transmission and reception circuits. Attenuation in radio systems. Modern systems and standards.
DIGITAL COMMUNICATION SYSTEMS
Spectra of rectangular waveforms, bit rates, baud rates and relationship to bandwidth. line codes and shaping. ASK, FSK, PSK, generation and demodulation, spectrum and bandwidth. Comparison of bandwidth and power. Quadrature carrier systems. OSI reference model. Asynchronous and synchronous communications. The serial data link. Protocols. FDM and TDM multiplexing. Parity and CRC principles and implementation. Networks. IP addressing
OPTICAL SYSTEMS
Optical sources; structure, performance and frequency response. Detectors. Fibres; modes, dispersion, optimum wavelength, coupling and splicing.
KD5067 -
Power Machine and Renewable Energy (Core,20 Credits)
This module aims to introduce you to the principles of operation of power systems, and enhance your knowledge of electrical machinery, power electronics and renewable energy. It will also allow you to consider the interaction between these system components.
A power network typically integrates power generators, distribution grid, transformers, transmission lines, and loads. This module provides you with an introduction to power system structure, and the principles of electrical machines. Moreover, low-carbon energy sources have increasingly contributed to the current power network, and power electronics play a key role in energy conversion. Therefore, the module also provides you with an introduction to renewable energy, and power electronics. Specifically, you will learn the following from this module:
POWER SYSTEMS (30%):
Principles and construction of single-phase transformers, equivalent circuits, efficiency and regulation, open and short circuit tests, connections of 3-phase transformers, and vector groups. Basics of powers, and power flow. Per unit systems and fundamentals of balanced fault level calculations.
ELECTRIC MACHINES (30%):
Principles and construction of DC machines, equivalent circuit, starting and speed control. Principles and construction of induction machines, expressions for speed of rotating field and slip, rotor power balance, torque-slip curve, and modern control techniques.
POWER ELECTRONICS (20%):
Fundamentals of power electronics and converters (AC-DC, DC-DC, and AC-AC etc.), and PWM control.
RENEWABLE ENERGY (20%):
Application of the knowledge of power systems, power electronics and power machines to a variety of renewable systems, such as hydro, photovoltaics, wind, combined heat and power, fuel cells, tidal and marine power plants, and illustration of their operating principles, types, characteristics and comparisons. Overview of electricity generation technologies from new and renewable energy, current contributions and future prospects. fored heat and power, fuel cells, tidal and marine power plants.
KD5080 -
Electrical Product Development (Core,20 Credits)
This module provides you with the knowledge and skills required to research, design, implement and manage the development of an electrical/electronic product. Specifically, you will learn:
• Systems level approach to product design and development.
• The use of online databases to search for patents and research current market trends.
• Project management and the use of Gantt charts.
• Project specification development, project design, electronic/electrical and mechanical design.
• Use of simulation tools, PCB design and rapid prototyping.
• Design analysis and selection, design for manufacturing, product life cycle and product costing.
• Standards and legal issues: market and technical risk assessment, intellectual property, product end of life considerations.
• Ethical aspects, social aspects, and environmental aspects of electrical/electronic engineering product development.
• Communication skills: Pitching technical ideas to general and technical audience.
• Engineering report writing, style, citation tools and content.
• Tracking and managing your professional skill development.
KL5001 -
Academic Language Skills for Mathematics, Physics and Electrical Engineering (Core – for International and EU students only,0 Credits)
Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.
The topics you will cover on the module include:
• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.
KL5001 -
Academic Language Skills for Mathematics, Physics and Electrical Engineering (Core – for International and EU students only,0 Credits)
Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.
The topics you will cover on the module include:
• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.
KL5006 -
Work placement year (Optional,120 Credits)
This module is designed for all standard full-time undergraduate programmes within the Faculty of Engineering and Environment to provide you with the option to take a one year work placement as part of your programme.
You will be able to use the placement experience to develop and enhance appropriate areas of your knowledge and understanding, your intellectual and professional skills, and your personal value attributes, relevant to your programme of study, as well as accreditation bodies such as BCS, IET, IMechE, RICS, CIOB and CIBSE within the appropriate working environments. Due to its overall positive impact on employability, degree classification and graduate starting salaries, the University strongly encourages you to pursue a work placement as part of your degree programme.
This module is a Pass/Fail module so does not contribute to the classification of your degree. When taken and passed, however, the Placement Year is recognised both in your transcript as a 120 credit Work Placement Module and on your degree certificate.
Your placement period will normally be full-time and must total a minimum of 40 weeks.
KL5007 -
Study abroad year (Optional,120 Credits)
This module is designed for all standard full-time undergraduate programmes within the Faculty of Engineering and Environment and provides you with the option to study abroad for one full year as part of your programme.
This is a 120 credit module which is available between Levels 5 and 6. You will undertake a year of study abroad at an approved partner University where you will have access to modules from your discipline, but taught in a different learning culture. This gives you the opportunity to broaden your overall experience of learning. The structure of study will be dependent on the partner and will be recorded for an individual student on the learning agreement signed by the host University, the student, and the home University (Northumbria).
Your study abroad year will be assessed on a pass/fail basis. It will not count towards your final degree classification but, it is recognised in your transcript as a 120 credit Study Abroad module and on your degree certificate in the format – “Degree title (with Study Abroad Year)”.
KL5008 -
Work placement semester (Optional,60 Credits)
This module operates within a partnership between the University, employer and yourself, and provides you with the opportunity to develop core competencies and employability skills relevant to your programme of study in a work based environment.
You will be able to use the placement experience to develop and enhance appropriate areas of your knowledge and understanding, your intellectual and professional skills, and your personal value attributes, relevant to your programme of study, within the appropriate working environments.
This module is a Pass/Fail module so does not contribute to the classification of your degree. When taken and passed, however, the placement is recognised both in your transcript as a 60 credit Work Placement Module and on your degree certificate.
Due to its overall positive impact on employability, degree classification and graduate starting salaries, the University strongly encourages you to pursue a work placement as part of your degree programme.
KL5009 -
MPEE - Study Abroad Semester (Optional,60 Credits)
This module is designed for all standard full-time undergraduate programmes within the Faculty of Engineering and Environment and provides you with the option to study abroad for one semester as part of your programme.
This is a 60 credit module which is available between Levels 5 and 6. You will undertake a semester of study abroad at an approved partner University where you will have access to modules from your discipline, but taught in a different learning culture. This gives you the opportunity to broaden your overall experience of learning. The structure of study will be dependent on the partner and will be recorded for an individual student on the learning agreement signed by the host University, the student, and the home University (Northumbria).
Your study abroad semester will be assessed on a pass/fail basis. It will not count towards your final degree classification but, if you pass, it is recognised in your transcript as an additional 60 credits for Engineering and Environment Study Abroad Semester.
KD6010 -
Power Systems (Optional,20 Credits)
This module aims to develop your knowledge, understanding and the ability to analyse the components of a modern power system. It allows you to study the components and operation of power systems, highlighting the principles, design, control, performance limits and protection from abnormal conditions. The theory, control and the properties of alternators, transmission lines, switchgear and protection will also be covered. Commercial issues surrounding the economics of power generation, electricity market and quality of supply are also explored. This module also gives you the opportunity to critically analyse and develop an understanding of practical design and implementation issues, such as load flow, fault and stability studies together with methods for voltage and frequency control, including the use of modern FACTS technologies. These and other topics will be reinforced by using real-world examples and case studies, with emphasis on the use of modern technologies in power systems.
More informationKD6024 -
Individual Engineering Project (40 Credits)
The module aims to provide you with an opportunity to carry out an extended study in a specific area of Engineering, developing your ability to work independently and promoting self-reliance. Guidance on how to source and assess the appropriateness of information is provided to you by the module tutor.
A key aim is to encourage you to apply theoretical and analytical techniques to problem solve. The module also aims to develop both verbal and written communication skills. The project will provide practical experience of drawing up a project specification defining aims, objectives and identifying an envisaged endpoint. With the supervisor’s guidance, you will prepare a project plan that includes a Gantt chart, project background and sourcing previous work and associated theory/simulation to assess whether the aims and objectives are achievable and that your theoretical basis is sound.
To meet University requirements and gain practical experience, you must perform a risk assessment to identify potential risks/hazards associated with the project. You will follow the defined plan to complete the project that will involve the application of appropriate theory and simulations leading to the production of prototype designs.
You will be encouraged to monitor your progress based upon the project plan and complete the design cycle by testing and redesign, if necessary. A final project report and verbal/poster presentation to the supervisor, second markers and peers are required towards the end of the module. You must maintain contact with the supervisor on a regular basis to discuss/assess progress and obtain advice. As a part of developing employability skills throughout the programme, you will continue to update and record your professional development.
KD6025 -
Design and Manufacturing Analysis (Core,20 Credits)
This module aims to provide you with an analytical approach to the issues around both the design and manufacturing of electronic or electrical products. In this respect you have two clear sections, linked by an analysis approach to determine functionality within the bounds of manufacturability.
Design Analysis
• Operational amplifier construction with a view to component reduction and therefore performance degradation. Analysis is therefore required to pinpoint the performance of sub-optimal designs with suitable engineering compromises being found.
• Differential amplifier structures as applied to Instrumentation design, is explored with mathematical rigor to establish their fundamental performance limits.
• Circuit design (typically filters) with consideration of the circuit performance when non-ideal components are used.
• Other complex analysis methods are introduced including: Sensitivity analysis, Tolerance analysis, and Monticarlo analysis.
Manufacturing Analysis
1. Electronics Manufacturing Yield - the performance of electronic yield predictions, with typical examples provided from Integrated Circuit Manufacture.
2. Reliability in Electronics Manufacturing - electronic reliability under the factors of cost, performance availability
3. Waste Management in Electronic Components - green electronic issues and legislation which affect both electronic product design and
manufacturing aspects,
4. Lean Manufacturing - in manufacturing technology illustrating the philosophy of lean manufacturing
KD6026 -
Digital Signal Processing Systems (Core,20 Credits)
This module aims to make use of the knowledge and analytic skills developed throughout the programme to design modern digital signal processing systems.
In this module you will learn:
• The fundamental concepts of discrete-time signals and systems.
• The fundamental mathematical transforms for time-domain and frequency domain representations.
• The design of digital filters; finite impulse filter and infinite impulse filter.
• The practical implementation of digital filters in simulation and hardware.
KD6029 -
Wireless and RF Systems Design (Optional,20 Credits)
This module aims to further develop your skills in electronic communications with specific reference to key techniques that are used in radio frequency (RF) communications. You will be exposed to the theory, design and analysis of all key aspects of RF and wireless communication systems.
All wireless communication systems consists of two key areas, namely high frequency circuit design and antenna design. Within high frequency circuit design
you will learn how to modify the performance of RF signals and will cover the key concepts of microwave circuit design for wireless and RF systems. Once the RF signal has been generated, it must then be converted to a signal that can be transmitted through air. This is the second key concept and will be covered in the second part of the module – namely antenna design and propagation. The antenna design section covers the key principles of transmitting an RF signal through free space. The antenna design topic also examines the key concepts of antenna design related to modern communication systems, including mobile telephone systems from 1G to 5G. A further key part of any mobile communication device is the interaction between circuit design and antenna design and will also be covered in this module.
For Microwave circuit design typical topics include: Transmission Line Basics, Smith Chart, Impedance Matching techniques, Lumped Elements, Impedance / Admittance parameters, ABCD parameters , S-parameters, Passive microwave circuits.
For Antenna design typical topics include: Basic antenna parameters, outline of antenna types, wires, apertures, dishes, patch antennas, antennas required for
mobile systems, Structure of Cellular systems. Base station design, Typical RF transmitter layout, Antenna types for mobile handset and base stations. Factors affecting reception.
KD6030 -
Optical Communications System Design (Optional,20 Credits)
The module will provide the knowledge and skills for you in two key themes of optical fibre and optical wireless communications. These are essential topics in electrical and electronics engineering programme that cover the fundamentals and advanced optical system designs in both fibre and wireless systems. Optical fibre communications provides the backbone for long-haul and medium range telecommunications that offers ultrahigh data transmission capacity whereas optical wireless communications is an emerging technology that enables data transmission via light, either in infrared or visible light band using laser and/or light emitting diode (LED) for indoor and short range communications system.
Through the module syllabus you will learn:
Fundamental optical fibre/wireless communications includes
- Introduction to the optical wire/wireless communications system and the overall design
- Identification of system elements, subsystems and required specifications
- Optical transmitter design, optical propagation channel, effect on the optical fibre, effect on the optical wireless channel, noise and losses, optical receiver design.
System design includes: multiple access techniques, system design and performance evaluation, analysis of the practical and industrial optical communications system
KD6031 -
Instrumentation and Control of Dynamical Systems (Optional,20 Credits)
This module shows you how to use modern control design techniques based on state-space differential equations governing a dynamical system. You will also cover instrumentation techniques that are required for practical implementation of control algorithms. Upon completion of the module, you will be able to design instrumentation and control systems; implement and evaluate them using relevant software packages. There are two main themes:
Control:
• Conventional and modern control design and analysis
• Description of dynamic control systems using differential equations, transfer functions, and state-space representation.
• Control system analysis, including dynamic responses of systems, stability and controllability of systems.
• Control system design, including design via open- and closed-loop systems, state and output feedback controls
• Analysis and design of digital systems.
• Use of software packages for simulation of control systems.
Instrumentation:
• Range, span, nonlinearity, hysteresis, resolution, ageing effects.
• Dynamic modelling of sensors using transfer functions and state-space methods.
• Signal conditioning: loading effects, bridge circuits, correction of non-linearity, effects of feedback, amplifier limitations.
• Noise and interference in instrumentation systems and estimation of errors.
• Signal recovery from noise interference.
• Computerised data acquisition systems including ADCs and a range of modern instrumentation protocols.
• Use software packages for simulation of instrumentation systems.
KL5001 -
Academic Language Skills for Mathematics, Physics and Electrical Engineering (Core – for International and EU students only,0 Credits)
Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.
The topics you will cover on the module include:
• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.
KL6068 -
Satellite Systems and Space Environment (Optional,20 Credits)
The module provides students with skills and knowledge to develop scientific and/or electronic systems for space applications. The topics covered are:
The space environment - launch, orbits, rocket equation, drag, radiation, vacuum, thermal gradients.
Satellite systems and system development for space applications - radio communication, ground stations and link budgets, solar power, data processing, Earth observation, optimisation of systems for space, materials choice for space, component characteristics, mechanical and thermal testing.
Product Acceptance and Qualification Assurance for space – industry standards for space-worthy design, functional testing, simulation of operations, verification and validation processes.
Environmental Testing – theory and practice of vibration testing, resonant sweeps, shock tests and random noise tests. Theory and practice of thermal vacuum testing, the effect of vacuum on electronics and thermal cycling. Theory and practice of radiation testing, how radiation effects electronics, how to design to be radiation tolerant, and testing components in the x-ray irradiator.
KL6069 -
Smart Energy System (Optional,20 Credits)
This module provides a lab-based group project to develop more design and practical skills for a final year of an undergraduate degree programme in electrical and electronic discipline. You will learn a wide range of extensive knowledge of electronic engineering subjects through undertaking the project, including on the microprocessor-based control system, internet of things (IoT), power conversion, and battery energy storage. You will be motivated to explore problems in real-world applications of electronics and address challenges using the developed skills.
This module will build on the skills acquired through previous study and gain some new knowledge to extend the practical experience of the students into the following areas:
• IoT cloud - based structure using microprocessors
• Modelling, Design and control of simple power DC-DC converter
• Battery charging/discharging and management techniques (e.g. state-of-charge and state-of-health estimation)
• Solar electric power generation
• Maximum power point tracking techniques
• DC motor drive and control
• Advanced programming
To start your application, simply select the month you would like to start your course.
Our Applicant Services team will be happy to help. They can be contacted on 0191 406 0901 or by using our Contact Form.
Full time Courses are primarily delivered via on-campus face to face learning but could include elements of online learning. Most courses run as planned and as promoted on our website and via our marketing materials, but if there are any substantial changes (as determined by the Competition and Markets Authority) to a course or there is the potential that course may be withdrawn, we will notify all affected applicants as soon as possible with advice and guidance regarding their options. It is also important to be aware that optional modules listed on course pages may be subject to change depending on uptake numbers each year.
Contact time is subject to increase or decrease in line with possible restrictions imposed by the government or the University in the interest of maintaining the health and safety and wellbeing of students, staff, and visitors if this is deemed necessary in future.
Northumbria University is committed to developing an inclusive, diverse and accessible campus and wider University community and are determined to ensure that opportunities we provide are open to all.
We are proud to work in partnership with AccessAble to provide Detailed Access Guides to our buildings and facilities across our City, Coach Lane and London Campuses. A Detailed Access Guide lets you know what access will be like when you visit somewhere. It looks at the route you will use getting in and what is available inside. All guides have Accessibility Symbols that give you a quick overview of what is available, and photographs to show you what to expect. The guides are produced by trained surveyors who visit our campuses annually to ensure you have trusted and accurate information.
You can use Northumbria’s AccessAble Guides anytime to check the accessibility of a building or facility and to plan your routes and journeys. Search by location, building or accessibility feature to find the information you need.
We are dedicated to helping students who may require additional support during their student journey and offer 1-1 advice and guidance appropriate to individual requirements. If you feel you may need additional support you can find out more about what we offer here where you can also contact us with any questions you may have:
Back to top