- Home
-
Study
Study
Interested in studying at Northumbria? With 31,500 students, Northumbria is one of the largest universities in the country, offering courses on either a full-time, part-time or distance learning basis.
Studying at Northumbria-
Undergraduate
- Undergraduate Study Degree
- Undergraduate Open Day & Events
- Application Guides
- Northumbria University UCAS Exhibitions
- Foundation Years
- Undergraduate Fees & Funding
- School & College Outreach
- Continuing Professional Development
-
Postgraduate
- Postgraduate Study Degree
- Postgraduate Research Degrees
- Postgraduate Open Days and Events
- Postgraduate Fees & Funding
- Flexible Learning
- Thinking about a Masters?
- Continuing Professional Development
- Change Direction
-
Student Life
- The Hub - Student Blog
- Accommodation
- Life in Newcastle
- Support for Students
- Careers
- Information for Parents
- Students' Union
- Northumbria Sport
-
-
International
International
Northumbria’s global footprint touches every continent across the world, through our global partnerships across 17 institutions in 10 countries, to our 277,000 strong alumni community and 150 recruitment partners – we prepare our students for the challenges of tomorrow. Discover more about how to join Northumbria’s global family or our partnerships.
View our Global Footprint-
Applying to Northumbria
- European Union
- Our London Campus
- Northumbria Pathway
- International Events
- Entry Requirements
- Agent Network
-
Northumbria Language Centre
- Faculty Requirements
- Acceptable English Requirements
- Pre-Sessional English and Study Skills
- Academic Language Skills Programmes (ALS)
-
International Fees, Funding & Scholarships
- International Undergraduate Fees
- International Undergraduate Funding
- International Masters Fees
- International Masters Funding
- International Postgraduate Research Fees
- International Postgraduate Research Funding
- International Money Matters
-
Life at Northumbria
- International student support
- The Hub - Student Blog
- Careers
-
International Mobility
- Current Northumbria Students
- Incoming Exchange Students
-
-
Business
Business
The world is changing faster than ever before. The future is there to be won by organisations who find ways to turn today's possibilities into tomorrows competitive edge. In a connected world, collaboration can be the key to success.
More on our Business Services -
Research
Research
Northumbria is a research-rich, business-focused, professional university with a global reputation for academic quality. We conduct ground-breaking research that is responsive to the science & technology, health & well being, economic and social and arts & cultural needs for the communities
Discover more about our Research -
About Us
-
About Northumbria
- Our Vision
- Our Staff
- Our Partners
- Student Profiles
- Alumni Profiles
- Leadership & Governance
- Academic Departments
- University Services
- History of Northumbria
- Contact us
- Online Shop
-
-
Alumni
Alumni
Northumbria University is renowned for the calibre of its business-ready graduates. Our alumni network has over 233,000 graduates based in 177 countries worldwide in a range of sectors, our alumni are making a real impact on the world.
Our Alumni - Work For Us
What will I learn on this module?
You will learn about a range of appropriate statistical techniques that are used to predict and analyse complex systems modelled by random matrices. You will be introduced to the generalisation of probability theory for multivariate calculus, the analysis of the most common ensembles (Gaussian Orthogonal and Unitary Ensembles, the Circular Ensembles) and methods for using these tools efficiently in numerical simulations.
Outline Syllabus
– Review of linear algebra and probability theory
– Numerical techniques to generate and analyse random matrices
– The Circular Unitary Ensemble (CUE): definition, spacing distribution, eigenvalues correlation functions
– The Circular Orthogonal Ensemble (COE)
– The Gaussian Ensembles: unitary, orthogonal, symplectic
– Orthogonal polynomial techniques (large N limit and universality)
Depending on the time the extrema statistics (Tracy-Widom distribution) will be derived as it can be found in numerous applications (combinatorics, biology)
How will I learn on this module?
You will learn through a series of lectures, seminars and problem-solving/computer-based workshops which include classroom discussions and presentations. Lectures allow you to witness the development of the theory of random matrices to provide with predictions of certain observables in complex systems, and understand how to apply the required techniques coming from several areas in mathematics.
Seminar classes and problem-solving/computer-based workshops will be scheduled weekly to allow exploration of the theoretical background to the techniques covered in the lectures.
Formative feedback is available weekly in the classes as you get to grips with new techniques and solve problems. In addition, we operate an open door policy where you can meet with your module tutor to seek further advice or help if required.
How will I be supported academically on this module?
Direct contact with the teaching team during the lectures and seminars will involve participation in both general class discussions as well as one to one discussions during the seminars. This gives you a chance to get immediate feedback pertinent to your particular needs in this session. Further feedback and discussion with the teaching team are also available at any time through our open door policy. In addition, all teaching materials, selected computer programmes and supplementary material (such as interesting articles) are available through the e-learning portal.
What will I be expected to read on this module?
All modules at Northumbria include a range of reading materials that students are expected to engage with. The reading list for this module can be found at: http://readinglists.northumbria.ac.uk
(Reading List service online guide for academic staff this containing contact details for the Reading List team – http://library.northumbria.ac.uk/readinglists)
What will I be expected to achieve?
Knowledge & Understanding:
1. Use specific random matrix ensembles to represent a large systems with complex interaction between their components
2. Evaluate observables and analyse statistical distributions
Intellectual / Professional skills & abilities:
3. Construct suitable models based on qualitative properties of systems and data sets.
4. Classify and assess occurrence of possible scenarios.
Personal Values Attributes (Global / Cultural awareness, Ethics, Curiosity) (PVA):
5. Critically appraise suitability of models and validation of assumptions.
How will I be assessed?
SUMMATIVE
1. Coursework: 50% - 1,3
(Assignment with set questions and problems - wordcount: max 1000 words + derivations + codes + graphs and plots)
2. Group project: 50% - 1,2,4,5
(Group work: 20min presentation with electronic slides + 10min questions/answers and discussion)
FORMATIVE
Formative assessment will be available on a weekly basis in the seminars through normal lecturer-student interactions and discussions around the seminar questions, allowing them to extend, consolidate and evaluate their knowledge.
Formative feedback will be provided on student work and errors in understanding will be addressed reactively using individual discussion. Solutions for seminar tasks will be provided after the students have attempted the questions, allowing students to receive feedback on the correctness of their solutions and to seek help if matters are still not clear.
Pre-requisite(s)
None
Co-requisite(s)
None
Module abstract
In “Random and complex systems” you will learn techniques to model statistical properties of systems with a large number of components using random matrix ensembles. Random matrices, originally introduced in high energy physics to describe properties of heavy atoms, have become a powerful tool for modelling a variety of systems with random and complex features. Applications range from physics (e.g. condensed matter to quantum gravity), mathematics (number theory, combinatorics), complexity science (traffic, communication, biological networks) and economics (stock and option pricing in financial markets).
You will learn through a combination of lectures andseminars. The lectures give a formal introduction to the theoretical aspects while the workshops enables one to deepen the knowledge by applying the theory to problems to more practical questions arising from physics, and complexity science. The workshops will be an opportunity to span the wide range of applications of random matrices, thus also strengthening your transferable skills and employability.
You will be assessed through a coursework and a group project presentation
Course info
UCAS Code G101
Credits 20
Level of Study Undergraduate
Mode of Study 4 years full-time or 5 years with a placement (sandwich)/study abroad
Department Mathematics, Physics and Electrical Engineering
Location City Campus, Northumbria University
City Newcastle
Start September 2024
Full time Courses starting in 2023 are primarily delivered via on-campus face to face learning but may include elements of online learning. We continue to monitor government and local authority guidance in relation to Covid-19 and we are ready and able to flex accordingly to ensure the health and safety of our students and staff.
Contact time is subject to increase or decrease in line with additional restrictions imposed by the government or the University in the interest of maintaining the health and safety and wellbeing of students, staff, and visitors, potentially to a full online offer, should further restrictions be deemed necessary in future. Our online activity will be delivered through Blackboard Ultra, enabling collaboration, connection and engagement with materials and people.
Current, Relevant and Inspiring
We continuously review and improve course content in consultation with our students and employers. To make sure we can inform you of any changes to your course register for updates on the course page.
Your Learning Experience
Find out about our distinctive approach at
www.northumbria.ac.uk/exp
Admissions Terms and Conditions
northumbria.ac.uk/terms
Fees and Funding
northumbria.ac.uk/fees
Admissions Policy
northumbria.ac.uk/adpolicy
Admissions Complaints Policy
northumbria.ac.uk/complaints