Biology BSc (Hons)
Option for Placement Year
Option for Study Abroad
Option for Placement Year
Option for Study Abroad
Visit an Open Day to get an insight into what it's like to study Biology. Speak to staff and students from the course and get a tour of the facilities.
112 UCAS Tariff points
From a combination of acceptable Level 3 qualifications which may include: A-level, T Level, BTEC Diplomas/Extended Diplomas, Scottish and Irish Highers, Access to HE Diplomas, or the International Baccalaureate.
Find out how many points your qualifications are worth by using the UCAS Tariff calculator: www.ucas.com/ucas/tariff-calculator
Northumbria University is committed to supporting all individuals to achieve their ambitions. We have a range of schemes and alternative offers to make sure as many individuals as possible are given an opportunity to study at our University regardless of personal circumstances or background. To find out more, review our Northumbria Entry Requirement Essential Information page for further details www.northumbria.ac.uk/entryrequirementsinfo
Subject Requirements:
Grade B in A-level Biology, or a recognised equivalent
GCSE Requirements:
Applicants will need Maths and English Language at minimum grade 4/C, or an equivalent.
Additional Requirements:
There are no additional requirements for this course.
International Qualifications:
We welcome applicants with a range of qualifications which may not match those shown above.
If you have qualifications from outside the UK, find out what you need by visiting www.northumbria.ac.uk/yourcountry
English Language Requirements:
International applicants should have a minimum overall IELTS (Academic) score of 6.0 with 5.5 in each component (or an approved equivalent*).
*The university accepts a large number of UK and International Qualifications in place of IELTS. You can find details of acceptable tests and the required grades in our English Language section: www.northumbria.ac.uk/englishqualifications
UK Fee in Year 1: £9,535
* You should expect to pay tuition fees for every year of study. The University may increase fees in the second and subsequent years of your course at our discretion in line with any inflationary or other uplift, as decided by the UK Government, up to the maximum amount for fees permitted by UK law or regulation for that academic year. To give students an indication of the likely scale of any future increase, the UK government has recently suggested that increases may be linked to RPIX ( Retail Price Index excluding mortgage interest payments)
International Fee in Year 1:
ADDITIONAL COSTS
Laboratory equipment such as spatula, lab book, marker pens and a scientific calculator are required and should cost no more than £25. You may be required to print some documents this should be no more than £10 per academic year. The programme includes a small number of day trips to relevant field sites. For sites with easy access by local public transport, students may be asked to make their own way there. Total cost should be no more than £12. Final year projects may also involve travel to easily accessible field sites on 8-10 different days, total cost up to £50. Student membership to the Royal Society of Biology is encouraged, cost is approximately £15 per year.
* At Northumbria we are strongly committed to protecting the privacy of personal data. To view the University’s Privacy Notice please click here
Please use the Apply Now button at the top of this page to submit your application.
Certain applications may need to be submitted via an external application system, such as UCAS, Lawcabs or DfE Apply.
The Apply Now button will redirect you to the relevant website if this is the case.
You can find further application advice, such as what to include in your application and what happens after you apply, on our Admissions Hub Admissions | Northumbria University
Module information is indicative and is reviewed annually therefore may be subject to change. Applicants will be informed if there are any changes.
AP0404 -
Cell Biology and Genetics (Core,20 Credits)
You will learn about the diversity of life and the unifying cell theory including, DNA as the universal information store and the central dogma of molecular biology as the unifying mechanism in all life. You will learn the structure and function of cells and the organelles they contain along with their life cycle, division, self-replication and eventual death.
You will learn the basic principles of heredity, including molecular, classical , human and microbial genetics. You will learn the structure, function, regulation of genes and genomes. You will also learn the fundamentals of applied genetics including an introduction to clinical genetics and the identification of genetic mutations and polymorphisms and their influence on disease processes.
Underpinning these theoretical concepts and principles covered in the lecture course you will be trained in basic techniques of handling DNA in the laboratory.
AP0406 -
Practical Skills (Core,20 Credits)
On this module you will learn the primary skills required to be a student of a science degree. These skills will cover both laboratory based and data/information retrieval and handling. As part of the laboratory skills you will study the importance of health & safety, ethics and appropriate sample handling. You will then move into the laboratory where hands on sessions offer you an opportunity to develop key skills in areas of liquid handling, microscopy, buffers, making solutions and dilutions, and enzymatic analysis. You will use your generated laboratory data to then study and understand appropriate methods of data manipulation and presentation. You will also on this module gain experience and confidence in searching for, understanding of and appreciation of scientific literature.
More informationAP0407 -
Biochemistry (Core,20 Credits)
This module will provide you with an important and invaluable introduction to the structure and function of the principal molecular components of living systems, including carbohydrates, lipids, proteins and nucleic acids. In addition, you will learn about the actions and properties of enzymes. The first part of the module will provide you with a foundation for this by explaining relevant chemical concepts which underpin chemistry in biological systems, including atomic structure, chemical bonding and the nature of molecular interactions. Then we will consider several carbon containing compounds that are present in biological systems and their chemical and physical properties. Following this, an investigation will be conducted into the structure, nomenclature, functions and significance of carbohydrates, lipids, proteins and nucleic acids. The role of proteins as enzymes will also be investigated to provide a foundation for the study of biochemistry in successive years.
More informationAP0408 -
Anatomy and Physiology (Core,20 Credits)
In this module you will learn and understand the basics of Anatomy and Physiology of the Human Body. You will also be introduced to the pathophysiology of some common diseases. You will learn about the general organisation of the human body and some of the body systems including the skeletal, muscular, cardiovascular, endocrine, digestive, nervous and respiratory systems. This module will provide you with the necessary basic knowledge required for the understanding of more advanced biomedical courses. The content of this module also fulfils the necessary requisites (i.e. core competencies) for course accreditation purposes with the Association for Nutrition (AfN) for students following the Human Nutrition degree pathway.
More informationAP0412 -
Animal and Plant Biology (Core,20 Credits)
You will learn about the diversity of plants and animals that inhabit the Earth and the principles of taxonomy and systematics which provide the basis for the classification of living organisms into hierarchical groupings. The relationships between form and function will be explored in a selection of representative animals and plants, through the study of the anatomy and physiology of the major plant and animal groups. You will gain experience of appropriate practical skills for laboratory and field-based investigations and techniques and software used to monitor animal and plant diversity and community composition. Examples of interactions between plants and animals will be used to illustrate the key concepts in the evolutionary theory and you will learn about current areas of research in animal and plant biology, in the context of challenges to global biodiversity and conservation initiatives.
More informationAP0413 -
Introduction to the Microbial World (Core,20 Credits)
You will learn about the range of micro-organisms which will include; bacteria, fungi, yeasts, viruses and single-celled organisms that inhabit the earth. You will learn about the importance of bacteria, fungi, yeasts and viruses with respect to biotechnology and the bioinformatic approaches that are used to investigate the diverse habitats they inhabit. You will also learn about the principles of taxonomy and systematics which provide the basis for the classification bacteria, fungi, yeasts, viruses and single-celled organisms into hierarchical groupings.
Underpinning theoretical concepts and principles will be covered in a lecture course that will be informed, illustrated and applied through a strong practical element. You will be trained in basic techniques of bacteriology and virology involving the selective isolation and identification.
JE5001 -
Academic Language Skills for Applied Sciences (Core – for International and EU students only,0 Credits)
Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.
The topics you will cover on the module include:
• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.
AP0508 -
Biology of Disease (Core,20 Credits)
You will learn the causes and consequences of damage to cells, including those caused by the generation of free radicals. You will increase your understanding of the pathological bases of cancer, such as characteristics of cancer cells, malignant and benign tumours, tumour suppressor genes, invasion and metastases. The introduction of the inflammatory processes in the human body underpins taught material in immune diseases later in the module. You will explore causes, pathophysiology, diagnosis and treatment of many organ disorders: cardiovascular disorders will provide information on areas such as atherosclerosis and hypertension. Information on diabetes and disorders of the reproductive hormones will be included in the endocrine section. Chronic obstructive and restrictive diseases will be taught within the respiratory disorders. Information on reproductive disorders will be taught within the section on infertility in men and women.
More informationAP0511 -
Molecular Biology and Genetics (Core,20 Credits)
You will learn the basic principles of molecular biology and gain an understanding of how the many different modern techniques can be applied to understanding genetics at the level of the nucleic acids - deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). You will learn why and how DNA and RNA can be manipulated in the laboratory in order to clone and sequence DNA, and produce useful proteins. In addition, you will gain practical experience in representative molecular biology methods and understanding in the context in which they are used. You will also learn how mutations in DNA can lead to human disease and discover the techniques that have been developed to identify normal and mutant DNA sequences in complex mixtures. There will be a focus on the use of molecular biology in understanding human genetics, in particular the diagnosis of disease at the chromosome and nucleic acid levels, and also the methods used for testing and screening for genetic susceptibility. You will learn how techniques have been developed to sequence the human genome and to identify individuals based on features within their DNA. The broader influence of molecular biology in non-human species will be included in your learning using examples of applied genetics.
More informationAP0514 -
Human Metabolism (Core,20 Credits)
In ‘Human Metabolism’ you will learn of how the body breaks down various biological molecules such as sugars, fats and proteins to gain energy and how it converts these molecules into the other various essential components required to function normally. You will learn about the disorders that can arise and the resulting consequences, with a food and nutritional sciences approach. Consequences such as malnutrition, vitamin deficiencies, diabetes and obesity will be discussed. You will learn about these various aspects in a system/organ-specific manner which will include the liver, the kidneys, heart and digestive tract, allowing you to clearly understand the relationship between normal and disrupted function.
More informationAP0515 -
Environmental Biology (Optional,20 Credits)
In this module you will learn how animals and plants interact with their environment, and with each other. How do factors like temperature, drought and the availability of nutrients affect plants and animals? The module will explore these issues. This is important, as the current climate change has an impact on both animals and plants. You will learn how in the course of evolution plants and animals have adapted to different climate conditions. With regards to plants, you will study how they have adapted not only their morphology, but also their photosynthesis to survive in a range of habitats. You will learn how animals have adapted their morphology, physiology and biochemistry to respond to variations in different environmental parameters and survive and function in various habitats, including extreme habitats such as the deep sea hydrothermal vents and very dry deserts. The interaction between plants and animals will also be studied.
More informationAP0516 -
Biology in Action (Optional,20 Credits)
You will learn how to apply your theoretical knowledge and skills to solving new scientific problems in the fields of animal, plant and microbial biology. Examples from the recent research activity of the tutors teaching on this module will be used to teach you the stages of the scientific method, which starts with having an idea and seeking the answer to a scientific question. You will be guided through this process in relation to two tasks: a structured problem-based approach to learning about the response of plants to herbicides, followed by a more open task of a small-scale project to investigate animal behaviour in an enriched captive environment. Your learning journey for each task will start with researching the relevant scientific literature and formulating hypotheses, followed by planning experiments, selecting the most appropriate methods of data collection (laboratory and field-based or via zoo web-cams, respectively), and putting your experimental design into practice and collecting data. You will then be guided through processing, analysing (including hypothesis-testing statistics), discussing and presenting the data collected in the most appropriate scientific format.
More informationAP0517 -
Bioinformatics and Molecular Biology (Optional,20 Credits)
You will learn information technology and computing sufficient to comprehend the theoretical basis of bioinformatics; the principles and basic applications of various bioinformatics tools in the analysis of biological data; and practical competence in the use of bioinformatics at a basic level to analyse biological data and understand the limitations of these techniques. You will also learn how to perform molecular biology experiments in a competent and safe manner; be able to carry out work independently; be able to write in a concise and coherent fashion; and be able to demonstrate an awareness of the wider social and political implications of the topics covered in the module.
More informationAP0518 -
Investigative Biotechnology (Optional,20 Credits)
You will learn how to conduct a scientific investigation, including how to formulate a scientific hypothesis and then initially write an investigative proposal on how the actual laboratory work will be carried out. You will learn specific methods that will enable you to safely grow, identify and count various food spoilage micro-organisms. The effects of these organisms on various beverage products will be investigated by using various scientific methodologies such as Gas Chromatography – Mass Spectrophotometry (GC-MS) and the abundance of certain microbes will be investigated using Next Generation Sequencing.
More informationAP0519 -
Principles of Neuroscience (Optional,20 Credits)
This module develops your understanding of the principle of control of the nervous system over bodily functions. In addition, you will be introduced to the neuropathology of some common neurological problems. Topics covered will include neurodevelopment, the somatosensory and motor systems, the autonomic nervous system and its role in homeostatic control, the special senses such as vision, olfaction, gustation and audition, and memory and aging. This module will provide you with the basic knowledge required for understanding topics covered in more advanced neuroscience modules associated to the BSc Biology (Neurobiology) degree.
More informationAP0520 -
Neuroscience Case Studies (Optional,20 Credits)
You will learn about various Neuroscience Disorders by exploring the cause(s), anatomy and physiology of a disorder, the rationale for tests
in assisting in the diagnosis of a disorder, as well as application and ethics associated to treatment of a disorder. Topics that may be covered
include;
• Inherited neurological disorders and genetic
selection
• Movement disorders
• Neuromuscular problems
• Sensory and/or motor disorders
• ANS disorders
• Memory loss
• Spinal Cord Injury
• Rehabilitation.
AP0553 -
Bioscience Research & Analysis (Core,20 Credits)
In this module you will explore and apply the fundamental biological and chemical principles used to develop important analyses in modern bioscience. You will learn how the composition of complex mixtures of molecules are analysed and interpreted to support clinical diagnosis or to illuminate bioscience research. Additionally, the use of cell culture to support biomedical analyses in cytotoxicity testing and also their responses to modelled pathophysiological challenges in biomedical research will be an important and exciting feature. You will learn about performing clinical diagnostics and its underpinning quality assurance. As well as the content illustrating important biological and analytical principles, the mode of assessment will develop your generic research skills in literature searching and evaluation, data analysis, critical appraisal of methodologies and report writing to prepare you for your final year research project and beyond in life as a professional scientist. Professionalism will be fostered through developing an understanding of the requirements needed for a modern diagnostic laboratory.
More informationAP0536 -
Study Abroad (Optional,120 Credits)
This study abroad module is designed for standard full-time undergraduate programmes to provide you with the option to take an additional one year study abroad within your programme.
Study abroad provides an opportunity to develop personal skills in a different learning environment with a partner university. The module does not affect the classification of your degree, but if successfully passed the study abroad year is recognised in your transcript and degree certificate. There is a competitive selection process for placements and places cannot be guaranteed.
AP0552 -
Industrial Placement Year (Optional,120 Credits)
The Industrial Placement Year module is a full year 120 credit module which is available on degree courses which include a Industrial Placement year which is taken as an additional year of study between levels 5 and 6. You will undertake a year of Industrial Placement at an approved placement partner. This broadens your overall experience of learning by embedding your current and future learning of your discipline within a regimented and target-oriented work environment. The course of Industrial Placement will be dependent on the partner and will be recorded for an individual student on the learning agreement signed by the host, the student, and the home University (Northumbria). Your Industrial Placement year will be assessed on a pass/fail basis. It will not count towards your final degree classification but, if you pass, it is recognised in your transcript as a 120 credit Industrial Placement Module and on your degree certificate in the format – “Degree title (with Industrial Placement Year)”.
More informationAP0606 -
Biomedical and Biological Sciences Research Project (Core,40 Credits)
You will learn how to plan a literature investigation on a specific research topic, exploit appropriate sources and databases to search for information, evaluate and critically review the primary literature articles and assess their significance in the broader context, evaluate experimentation protocols required to carry out the proposed research, conduct experiments in a safe and effective manner and discuss the validity and significance of the data provided, present the project work in the form of an oral presentation and written report in an appropriate style and format.
More informationAP0607 -
Molecular Cell Interactions (Core,20 Credits)
In the early part of the module you will learn about mammalian cell signalling processes correlated with their role in disease pathogenesis and cellular responses to toxic compounds. These lectures will provide a sound theoretical understanding of concepts that will be further explored in material designed to consider the molecular mechanisms underpinning carcinogenesis. To augment this approach you will then also learn about the molecular basis of bacterial signalling and bacterial pathogenesis. As the module further develops you will then learn about therapeutic strategies designed to alleviate disease/pathogenesis. The content of this material will include the molecular basis of therapeutic design including drug action, chemotherapy and gene therapy. These lectures will serve to provide a molecular therapeutic complement to the pathogenesis lectures. Finally through case studies and essay writing you should learn to effectively, and critically, evaluate modern molecular based research.
More informationAP0609 -
Advanced Analytical Techniques (Core,20 Credits)
In this module you will explore essential advanced analytical techniques relevant to the practice of modern Biomedical Sciences. You will learn about the scientific principles underpinning these methodologies and also how they are applied to both medical diagnostics and to research. You will gain an understanding of genetic engineering strategies and purification of recombinant proteins for analysis. In addition you will also learn about advanced separation techniques such as flow cytometry and Chromatin immunoprecipitation (ChIP) as well as automated enzyme analysis. You will also gain an insight into cutting edge technologies such as next generation sequencing and microarray technologies in the context of both RNA (transcriptomics), protein (proteomics) and small molecules (metabolomics). In addition to learning the theoretical aspects and gaining hands-on laboratory experience in these techniques, you will learn to evaluate, compare and make sound evidence-based choices regarding analytical approach and experimental design that will prove a key skill in your future career.
More informationAP0612 -
The Impact of Science on Society (Core,20 Credits)
The world around us is continually being shaped by science, and by society's relationship to it. Increasingly people need to be informed users and consumers of scientific knowledge, but are unlikely ever to be producers of new scientific knowledge, thereby highlighting the importance of effective science communication, its impact on public engagement with science and the subsequent public understanding of science.
In this module you will review a range of contemporary bioscience and technology topics in terms of [i] the underpinning research/evidence base, [ii] the associated ethical, legal and social implications (ELSI), [iii] how science is communicated to the public and [iv] subsequent impact(s) on modern society. Subjects for review will include modern (bio) medical practice such as genetic screening, the allocation of scarce life saving resources, the use of animals as experimental research subjects, and biodiversity conservation. A case study based approach will be used for delivery of topics. Transferable skills in reading, research, writing, analysis and presentation will also be covered in the context of effective science communication to enable application of critical thinking skills when reading, writing and talking about science. An assessment seminar will be form part of the module schedule.
This module will give you the opportunity to explore the changing ethical, legal and social implications of research within the biosciences, with an overall aim of developing graduates who are ready to talk about science, interpret its influences in modern society and analyse contemporary science and technology based issues, so that they are able to communicate their understanding to others and contribute informed views to ongoing debates.
AP0613 -
Current Topics in Biology and Microbiology (Optional,20 Credits)
In this module, there is a strong emphasis on independent work. The module will start with a short series of lectures, in which current and relevant topics in biology and microbiology will be presented. These lectures provide you with a basis of knowledge and insight in the topics. Apart from the factual knowledge, the problems associated with the topics and the scientific approach in the research studies will give you a greater insight in the topics and their scientific and social-economical, agricultural and/or ecological relevance. You then will explore one of these topics in depth by performing an independent focussed literature study. You will make extensive use of literature searches using relevant academic databases to gather information on your topic, and to obtain an overview of the current state of knowledge and research in the world wide scientific community in this area. You will locate and access the relevant data in the scientific literature, compare and contrast these data and critically evaluate your findings in a focussed literature review of your topic. These are important skills to master – all scientific research starts with exploring and evaluating what is known already. The module equips you with the skills needed to set up and write a scientific review paper.
More informationAP0614 -
Applied Bioinformatics and Post Genomics (Optional,20 Credits)
You will learn the fundamental importance of bioinformatics to 21st century biology and how it can be applied to the investigation of human disease, and how it shapes research in a post-genomics era. Topics include:
• The human genome
• Microarray and next-generation sequencing
• Analysis of genome-wide disease datasets
• Identification of differentially expressed genes
• Construction of classifiers
• CRISPR-Cas and its biotechnological applications
• Post-genomic approaches to research
AP0615 -
Neuroscience in Practice (Optional,20 Credits)
In both basic neuroscience research, and within the investigation of a neurological disorder, different neuroscience disciplines contribute to the investigation process. In the lecture/seminar series you will learn about techniques utilised in these investigations and will study aspects of practical Neuroscience to include lecture based discussion on e.g. Neuroanatomy, Neurophysiology, Molecular neuroscience, Ethics and Law. Taking the principles you have learned from the lecture/seminar series you will apply these to the creation of a group portfolio on an area of either basic research or disease study. This will aid you in learning the negotiating and social skills required to successfully navigate team dynamics in a constructive manner.
More informationTo start your application, simply select the month you would like to start your course.
Our Applicant Services team will be happy to help. They can be contacted on 0191 406 0901 or by using our Contact Form.
Full time Courses are primarily delivered via on-campus face to face learning but could include elements of online learning. Most courses run as planned and as promoted on our website and via our marketing materials, but if there are any substantial changes (as determined by the Competition and Markets Authority) to a course or there is the potential that course may be withdrawn, we will notify all affected applicants as soon as possible with advice and guidance regarding their options. It is also important to be aware that optional modules listed on course pages may be subject to change depending on uptake numbers each year.
Contact time is subject to increase or decrease in line with possible restrictions imposed by the government or the University in the interest of maintaining the health and safety and wellbeing of students, staff, and visitors if this is deemed necessary in future.
Northumbria University is committed to developing an inclusive, diverse and accessible campus and wider University community and are determined to ensure that opportunities we provide are open to all.
We are proud to work in partnership with AccessAble to provide Detailed Access Guides to our buildings and facilities across our City, Coach Lane and London Campuses. A Detailed Access Guide lets you know what access will be like when you visit somewhere. It looks at the route you will use getting in and what is available inside. All guides have Accessibility Symbols that give you a quick overview of what is available, and photographs to show you what to expect. The guides are produced by trained surveyors who visit our campuses annually to ensure you have trusted and accurate information.
You can use Northumbria’s AccessAble Guides anytime to check the accessibility of a building or facility and to plan your routes and journeys. Search by location, building or accessibility feature to find the information you need.
We are dedicated to helping students who may require additional support during their student journey and offer 1-1 advice and guidance appropriate to individual requirements. If you feel you may need additional support you can find out more about what we offer here where you can also contact us with any questions you may have:
Back to top