Mechanical Engineering MSc
2 Years Full-Time with Advanced Practice | September and January Start
Option for Placement Year
Option for Study Abroad
Option for Placement Year
Option for Study Abroad
Applicants should normally have:
A minimum of a 2:2 honours degree in an engineering or science discipline. Other subject qualifications, equivalent professional qualifications and/or relevant work experience will be considered on an individual basis.
International applicants (apart from exempt nationalities) will need an ATAS certificate to enrol on this course. Without this certificate, a visa application will be refused. Please visit: www.gov.uk/guidance/academic-technology-approval-scheme for more information.
International qualifications:
If you have studied a non UK qualification, you can see how your qualifications compare to the standard entry criteria, by selecting the country that you received the qualification in, from our country pages. Visit www.northumbria.ac.uk/yourcountry
English language requirements:
International applicants are required to have a minimum overall IELTS (Academic) score of 6.5 with 5.5 in each component (or approved equivalent*).
*The university accepts a large number of UK and International Qualifications in place of IELTS. You can find details of acceptable tests and the required grades you will need in our English Language section. Visit www.northumbria.ac.uk/englishqualifications
For further admissions guidance and requirements, please visit www.northumbria.ac.uk/admissionsguidance Please review this information before submitting your application.
Full UK Fee: £14,000
Full International Fee: £23,950
Scholarships and Discounts
ADDITIONAL COSTS
Optional field trips - approximate costs up to £200.
* At Northumbria we are strongly committed to protecting the privacy of personal data. To view the University’s Privacy Notice please click here
Module information is indicative and is reviewed annually therefore may be subject to change. Applicants will be informed if there are any changes.
KB7053 -
Academic Language Skills for Mechanical and Construction Engineering (Core – for International and EU students only,0 Credits)
Academic skills when studying away from your home institution can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject area in the Department of Architecture and Built Environment. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.
The topics you will cover on the module include:
• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’.
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Discussing ethical issues in research, and analysing results.
• Describing bias and limitations of research.
• Developing self-reflection skills.
KB7059 -
Advanced Stress and Structural Analysis (Core,20 Credits)
Advanced stress and structural analysis will enhance and evolve your understanding of and develop specialist knowledge in the design and analysis of continuous mechanical and structural systems from a mechanics perspective. The module aims to evaluate design and analysis methods in solving complex mechanical and structural problems using analytical, computational, and experimental approaches. You will investigate the advanced mechanics of material non-linearity and failure, how to design structures and components to avoid failure and the environmental and societal impact of structural design and failure.
More informationKB7060 -
Heat, Mass Transfer & Computational Fluid Dynamics (Core,20 Credits)
This module will evolve your understanding of and develop specialist knowledge in the subject area of heat and mass transfer systems. It aims to appraise practical methods in solving complex problems in the subject field using analytical, computational, and experimental approaches. Open-ended problems with no obvious and immediate solution, in topics such as viscous flow, heat transfer and turbulence will be considered and judged in the context of their industrial application. You will evaluate the characterisation and specification of complex systems and emerging technologies in this field in the context of global developments in this area of mechanical engineering.
More informationKB7061 -
Sustainable Development for Engineering Practitioners (Core,20 Credits)
This module explores the fundamentals of sustainable and ethical development for engineering practitioners, considering the role and responsibility of the engineer within society. The module will consider the elements of sustainable development as they relate to decision making in engineering, for example, consideration of legislation, economics, energy, materials, environment, and society. The challenges engineering activities present society are examined, and ethical solutions for the future of our planet are sought through the use of various techniques and tools such as the triple bottom line, stakeholder analysis, the circular economy, carbon footprint, material and energy supply chains and risk. A rational argument for sustainable solutions will be presented using both qualitative and quantitative data sources and tools using a wide range of published literature and from students’ own experience.
More informationKB7062 -
Engineering Optimisation and Design (Core,20 Credits)
In this module, you will investigate and apply optimisation techniques and tools to aid in engineering design to solve complex problems. This will involve evaluating available data using engineering principles and engineering judgment to work with information that may be uncertain or incomplete, discussing the limitations of the techniques employed. A number of conflicting goals mean that the selection and implementation of optimisation approaches requires significant insight and formulation. You will explore how optimisation is integral to the design of components and systems and how it is used in new and emerging technologies to push the envelope of current performance.
More informationKB7068 -
Research Methods (Core,20 Credits)
You will learn to work both independently, and in a group environment, to develop knowledge, skills, and awareness essential to complex-problem-solving research and innovation in relevant engineering subjects. You will learn through the practice of identification of need, research planning including research idea generation and proposal development. You will learn to plan and carry research responsibly, assessing risks and constraints analysis in legislation, security, economics, energy, materials, equipment, health safety and environmental impact. You will also learn to make appropriate choices when executing your research investigation, for example, developing essential skills in qualitative and quantitative research methods that can be employed to achieve your designed aims and objectives.
More informationKB7070 -
Thermo-Mechanical Energy Conversion Systems (Core,20 Credits)
This module will evolve your understanding of and develop specialist knowledge in the subject area of technologies for the utilisation of renewable and sustainable energy sources for heat and power production using heat engines and other types of converters, such as: Solar, biomass, hydrogen and waste thermal energy resources, internal and external combustion engines, solar thermal energy, geothermal and hydrogen technology. You will explore energy conversion system theory and their application through practical classes where you will also be able to develop skills important to your future engineering practice. Open-ended problems with no obvious and immediate solution, in topics such as viscous flow, heat transfer and turbulence will be considered and judged in the context of their industrial application. You will evaluate the characterisation and specification of complex systems and emerging technologies in this field in the context of global developments in this area of renewable and sustainable energy engineering.
More informationKB7056 -
Advanced Practice Semester (Core,60 Credits)
This 60 credit module is designed for all full-time postgraduate programmes within the Faculty of Engineering and Environment and provides you with the opportunity to undertake a Live Project (including the possibility of live research project work with staff). for one semester as part of your programme. This experience gives you the opportunity to apply skills and knowledge acquired during the taught part of your programme and to acquire new skills and knowledge in an alternative learning environment. Specific learning will be defined in a personal learning contract.
Your Advanced Practice semester will be assessed on a pass/fail basis and as such, it does not contribute to the classification of your degree. However when taken and passed it is recognised both in your transcript as a 60 credit Advanced Practice Module and in your degree title.
KB7069 -
Research Project (Core,60 Credits)
You will learn to work independently, perform systems thinking, and bring together your specialist knowledge and skills within a research and development project. You will work with the guidance of a tutor to direct your learning and develop your abilities in areas such as project planning and management, detailed design of the proposed method, prototype fabrication or virtual system modelling and critical evaluation and identification of further developments. You will be provided with the opportunity to demonstrate to potential future employers the breadth and depth of your ability by not only using your specialist abilities, but also through the demonstration of your planning, organisational and independent working skills. You will be expected to incorporate unfamiliar knowledge as well as the wider social and environmental considerations of the engineering profession.
More informationThe following alternative study options are available for this course:
Sep, Jan start
Sep start
To start your application, simply select the month you would like to start your course.
Our Applicant Services team will be happy to help. They can be contacted on 0191 406 0901 or by using our Contact Form.
Full time Courses are primarily delivered via on-campus face to face learning but could include elements of online learning. Most courses run as planned and as promoted on our website and via our marketing materials, but if there are any substantial changes (as determined by the Competition and Markets Authority) to a course or there is the potential that course may be withdrawn, we will notify all affected applicants as soon as possible with advice and guidance regarding their options. It is also important to be aware that optional modules listed on course pages may be subject to change depending on uptake numbers each year.
Contact time is subject to increase or decrease in line with possible restrictions imposed by the government or the University in the interest of maintaining the health and safety and wellbeing of students, staff, and visitors if this is deemed necessary in future.
Northumbria University is committed to developing an inclusive, diverse and accessible campus and wider University community and are determined to ensure that opportunities we provide are open to all.
We are proud to work in partnership with AccessAble to provide Detailed Access Guides to our buildings and facilities across our City, Coach Lane and London Campuses. A Detailed Access Guide lets you know what access will be like when you visit somewhere. It looks at the route you will use getting in and what is available inside. All guides have Accessibility Symbols that give you a quick overview of what is available, and photographs to show you what to expect. The guides are produced by trained surveyors who visit our campuses annually to ensure you have trusted and accurate information.
You can use Northumbria’s AccessAble Guides anytime to check the accessibility of a building or facility and to plan your routes and journeys. Search by location, building or accessibility feature to find the information you need.
We are dedicated to helping students who may require additional support during their student journey and offer 1-1 advice and guidance appropriate to individual requirements. If you feel you may need additional support you can find out more about what we offer here where you can also contact us with any questions you may have:
Back to top