KD5067 - Power Machine and Renewable Energy

What will I learn on this module?

This module aims to introduce you to the principles of operation of power systems, and enhance your knowledge of electrical machinery, power electronics and renewable energy. It will also allow you to consider the interaction between these system components.

A power network typically integrates power generators, distribution grid, transformers, transmission lines, and loads. This module provides you with an introduction to power system structure, and the principles of electrical machines. Moreover, low-carbon energy sources have increasingly contributed to the current power network, and power electronics play a key role in energy conversion. Therefore, the module also provides you with an introduction to renewable energy, and power electronics. Specifically, you will learn the following from this module:

POWER SYSTEMS (30%):
Principles and construction of single-phase transformers, equivalent circuits, efficiency and regulation, open and short circuit tests, connections of 3-phase transformers, and vector groups. Basics of powers, and power flow. Per unit systems and fundamentals of balanced fault level calculations.

ELECTRIC MACHINES (30%):
Principles and construction of DC machines, equivalent circuit, starting and speed control. Principles and construction of induction machines, expressions for speed of rotating field and slip, rotor power balance, torque-slip curve, and modern control techniques.

POWER ELECTRONICS (20%):
Fundamentals of power electronics and converters (AC-DC, DC-DC, and AC-AC etc.), and PWM control.

RENEWABLE ENERGY (20%):
Application of the knowledge of power systems, power electronics and power machines to a variety of renewable systems, such as hydro, photovoltaics, wind, combined heat and power, fuel cells, tidal and marine power plants, and illustration of their operating principles, types, characteristics and comparisons. Overview of electricity generation technologies from new and renewable energy, current contributions and future prospects. fored heat and power, fuel cells, tidal and marine power plants.

How will I learn on this module?

The module will be delivered via a combination of formal lectures, seminar (tutorial) classes, laboratory workshops, and directed learning and independent learning. You will thoroughly investigate the theory and analysis of electrical power engineering and renewable energy during formal lectures. Regular seminar (tutorial) classes and practical workshops in the laboratory will provide you with the vital problem solving and hands-on experience required to develop your skills for solving practical problems. In addition, examples of real system design and analysis will be introduced and performed on a small scale in the assignments. The assignments will enhance your theoretical knowledge and expose you to the practical work and new technologies. Short in-class formative tests and quizzes will be used to provide feedback to both the lecturers and you on learning outcome understanding.

Practical work will enhance your skills which are important for future employment.

How will I be supported academically on this module?

The module is delivered as noted in lectures, seminars and workshops. These provide the key academic support to the module; however around this a number of support structures are included.
Workshops, supported by lab tutors, effectively provide verbal feedback and comments throughout the session. Such comments may be generic and applicable to all students, typically noting procedures or some technical guideline or could be may be more directed to the individuals learning.
The most appropriate use of blackboard (online platform) is made in the module where the module taught content is provided along with links to the reading list. Online screen videos are included on the eLP platform to help students understanding of key concepts related to this module.

What will I be expected to read on this module?

All modules at Northumbria include a range of reading materials that students are expected to engage with. The reading list for this module can be found at: http://readinglists.northumbria.ac.uk
(Reading List service online guide for academic staff this containing contact details for the Reading List team – http://library.northumbria.ac.uk/readinglists)

What will I be expected to achieve?

Knowledge & Understanding:
1. Understanding the fundamental theory and operating principles of electrical machinery, power systems, power electronic equipment and the interaction between these. (AHEP4: C1)
2. Understanding of the principles of emerging technologies of new and renewable energy resources, and UK government energy strategy. (AHEP4: C1)

Intellectual / Professional skills & abilities:
3. Design power systems, and identify the safe working practices needed. In addition, understanding the regulatory framework around power systems (AHEP4: C1, C12, C14, M12, M14)
4. Perform and evaluate lab results from simulation and test equipment, writing technical reports on key findings. (AHEP4: C3)

Personal Values Attributes (Global / Cultural awareness, Ethics, Curiosity) (PVA):
5. Perform team based lab work, in a safe working manner when dealing with high voltages / currents. (AHEP4: C16)

How will I be assessed?

The module will be assessed by two continuous assessments:
Coursework (CW): The first assignment is computer-workshop based report, covering power systems and power electronics part, which occupies 50% of the total module mark. A video presentation is required to show individual work on how to build the power network. This assessment corresponds to the learning outcomes 1,3,5.Coursework (CW):
The second assignment is lab-based report, covering induction machine and renewable energy, weighted 50% of the total module mark. The students do the lab in a group, generally 4 students per group. The students should submit an individual report. A video presentation or lab test is included to test the students’ individual understanding. This assessment corresponds to the learning outcomes 2,.

Formative feedback will be provided in the laboratory sessions, seminar sessions, and in-class-quiz (exercise) sessions in an interactive manner by engaging students in the active learning. Individual feedback on the assignments will be provided via the blackboard, and the students can access to the feedback of their own submissions.

Pre-requisite(s)

N/A

Co-requisite(s)

N/A

Module abstract

This popular module will deliver you substantial materials on power systems, electrical machines, power converters, renewable energy and the integration of the above. The active teaching and learning in lectures and tutorials will benefit you to grasp the essential knowledge on power system components, power flow, power balance, power fault level calculation, DC machines, AC induction machines, power conversion circuits, and renewable energy. The workshops on power system simulations and induction machine experiments will enhance your skills for solving engineering-oriented problems. You will be assessed by the two lab-based coursework, and each of them occupies 50% of the total mark. The learning of the module will benefit you to equip with necessary knowledge and skills for the future employments in electrical and energy industries.

Course info

UCAS Code H605

Credits 20

Level of Study Undergraduate

Mode of Study 4 years full-time or 5 years with a placement (sandwich)/study abroad

Department Mathematics, Physics and Electrical Engineering

Location City Campus, Northumbria University

City Newcastle

Start September 2024 or September 2025

Fee Information

Module Information

All information is accurate at the time of sharing. 

Full time Courses are primarily delivered via on-campus face to face learning but could include elements of online learning. Most courses run as planned and as promoted on our website and via our marketing materials, but if there are any substantial changes (as determined by the Competition and Markets Authority) to a course or there is the potential that course may be withdrawn, we will notify all affected applicants as soon as possible with advice and guidance regarding their options. It is also important to be aware that optional modules listed on course pages may be subject to change depending on uptake numbers each year.  

Contact time is subject to increase or decrease in line with possible restrictions imposed by the government or the University in the interest of maintaining the health and safety and wellbeing of students, staff, and visitors if this is deemed necessary in future.

 

Your Learning Experience

Find out about our distinctive approach at 
www.northumbria.ac.uk/exp

Admissions Terms and Conditions
northumbria.ac.uk/terms

Fees and Funding
northumbria.ac.uk/fees

Admissions Policy
northumbria.ac.uk/adpolicy

Admissions Complaints Policy
northumbria.ac.uk/complaints